Gradient plasticity in gradient nanocrystalline metals: Extra toughness from dislocation migration

2021 ◽  
pp. 103879
Author(s):  
Jingyi Zhao ◽  
Zhencheng Ren ◽  
Xiaosheng Gao ◽  
Yalin Dong ◽  
Chang Ye
2009 ◽  
Vol 50 (3) ◽  
pp. 407-420
Author(s):  
ROGER YOUNG

AbstractAn analytic solution is developed for the one-dimensional dissipational slip gradient equation first described by Gurtin [“On the plasticity of single crystals: free energy, microforces, plastic strain-gradients”, J. Mech. Phys. Solids48 (2000) 989–1036] and then investigated numerically by Anand et al. [“A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results”, J. Mech. Phys. Solids53 (2005) 1798–1826]. However we find that the analytic solution is incompatible with the zero-sliprate boundary condition (“clamped boundary condition”) postulated by these authors, and is in fact excluded by the theory. As a consequence the analytic solution agrees with the numerical results except near the boundary. The equation also admits a series of higher mode solutions where the numerical result corresponds to (a particular case of) the fundamental mode. Anand et al. also established that the one-dimensional dissipational gradients strengthen the material, but this proposition only holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot be done. Hence the possibility remains open that dissipational gradient weakening may also occur.


2000 ◽  
Vol 15 (8) ◽  
pp. 1786-1796 ◽  
Author(s):  
Y. Huang ◽  
Z. Xue ◽  
H. Gao ◽  
W. D. Nix ◽  
Z. C. Xia

We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicronlength scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework.


Sign in / Sign up

Export Citation Format

Share Document