micro indentation
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 71)

H-INDEX

37
(FIVE YEARS 4)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Pouya Shojaei ◽  
Riccardo Scazzosi ◽  
Mohamed Trabia ◽  
Brendan O’Toole ◽  
Marco Giglio ◽  
...  

While deposited thin film coatings can help enhance surface characteristics such as hardness and friction, their effective incorporation in product design is restricted by the limited understanding of their mechanical behavior. To address this, an approach combining micro-indentation and meso/micro-scale simulations was proposed. In this approach, micro-indentation testing was conducted on both the coating and the substrate. A meso-scale uniaxial compression finite element model was developed to obtain a material model of the coating. This material model was incorporated within an axisymmetric micro-scale model of the coating to simulate the indentation. The proposed approach was applied to a Ti/SiC metal matrix nanocomposite (MMNC) coating, with a 5% weight of SiC nanoparticles deposited over a Ti-6Al-4V substrate using selective laser melting (SLM). Micro-indentation testing was conducted on both the Ti/SiC MMNC coating and the Ti-6Al-4V substrate. The results of the meso-scale finite element indicated that the MMNC coating can be represented using a bi-linear elastic-plastic material model, which was incorporated within an axisymmetric micro-scale model. Comparison of the experimental and micro-scale model results indicated that the proposed approach was effective in capturing the post-indentation behavior of the Ti/SiC MMNC coating. This methodology can also be used for studying the response of composite coatings with different percentages of reinforcements.


2021 ◽  
Author(s):  
Michael Sheyka ◽  
M.M. Reda Taha ◽  
T. Khraishi ◽  
I. El-Kady ◽  
Mehmet F. Su

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
He Xue ◽  
Jinxuan He ◽  
Jianlong Zhang ◽  
Yuxuan Xue

AbstractThe hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure, and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test. To accurately get actual material mechanical properties in the local region of structure, a micro-indentation test system incorporated by an electronic universal material test device has been established. An indenter displacement sensor and a group of special micro-indenter assemblies are established. A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study. Based on the above test system and analysis platform, an approach to obtaining material mechanical properties in the local region of structures is proposed and established. The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under different elongations. The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance. Compared with the tensile test results, the deviations of material mechanical parameters, such as hardness H, the hardening exponent n, the yield strength σy, and others are within 5% obtained through the indentation test and the finite element analysis. It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1447
Author(s):  
Madalina Simona Baltatu ◽  
Andrei Victor Sandu ◽  
Marcin Nabialek ◽  
Petrica Vizureanu ◽  
Gabriela Ciobanu

Over the last decade, researchers have been concerned with improving metallic biomaterials with proper and suitable properties for the human body. Ti-based alloys are widely used in the medical field for their good mechanical properties, corrosion resistance and biocompatibility. The TiMoZrTa system (TMZT) evidenced adequate mechanical properties, was closer to the human bone, and had a good biocompatibility. In order to highlight the osseointegration of the implants, a layer of hydroxyapatite (HA) was deposited using a biomimetic method, which simulates the natural growth of the bone. The coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro indentation tests and contact angle. The data obtained show that the layer deposited on TiMoZrTa (TMZT) support is hydroxyapatite. Modifying the surface of titanium alloys represents a viable solution for increasing the osseointegration of materials used as implants. The studied coatings demonstrate a positive potential for use as dental and orthopedic implants.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3765
Author(s):  
Simona-Nicoleta Mazurchevici ◽  
Alina Marguta ◽  
Bogdan Istrate ◽  
Marcelin Benchea ◽  
Mihai Boca ◽  
...  

The paper aims to investigate the behavior of Arboblend V2 Nature biopolymer samples covered with three ceramic powders, Amdry 6420 (Cr2O3), Metco 143 (ZrO2 18TiO2 10Y2O3) and Metco 136F (Cr2O3-xSiO2-yTiO2). The coated samples were obtained by injection molding, and the micropowder deposition was achieved by using the Atmospheric Plasma Spray (APS) method, with varied thickness layers. The present study will only describe the results for nine-layer deposition because, as the number of layers’ increases, the surface quality and mechanical/thermal characteristics such as wear, hardness and thermal resistance are also increased. The followed determinations were conducted: the adhesion strength, hardness on a microscopic scale by micro-indentation, thermal analysis and structural and morphological analysis. The structural analysis has highlighted a uniform deposition for the ZrO2 18TiO2 10Y2O3 layer, but for the layers that contained Cr2O3 ceramic microparticles, the deposition was not completely uniform. The thermal analysis revealed structural stability up to a temperature of 230 °C, the major degradation of the biopolymer matrix taking place at a temperature around 344 °C. The samples’ crystalline structure as well as the presence of the Cr2O3 compound significantly influenced the micro-indentation and scratch analysis responses. The novelty of this study is given by itself the coating of the Arboblend V2 Nature biopolymer (as base material), with ceramic microparticles as the micropowder coating material. Following the undertaken study, the increase in the mechanical, tribological and thermal characteristics of the samples recommend all three coated biopolymer samples as suitable for operating in harsh conditions, such as the automotive industry, in order to replace plastic materials.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5885
Author(s):  
Cristina Lopez-Crespo ◽  
Alejandro S. Cruces ◽  
Stanislav Seitl ◽  
Belen Moreno ◽  
Pablo Lopez-Crespo

Accurate knowledge of the plastic zone of fatigue cracks is a very direct and effective way to quantify the damage of components subjected to cyclic loads. In this work, we propose an ultra-fine experimental characterisation of the plastic zone based on Vickers micro-indentations. The methodology is applied to different compact tension (CT) specimens made of aluminium alloy 2024-T351 subjected to increasing stress intensity factors. The experimental work and sensitivity analysis showed that polishing the surface to #3 μm surface finish and applying a 25 g-force load for 15 s produced the best results in terms of resolution and quality of the data. The methodology allowed the size and shape of both the cyclic and the monotonic plastic zones to be visualised through 2D contour maps. Comparison with Westergaard’s analytical model indicates that the methodology, in general, overestimates the plastic zone. Comparison with S355 low carbon steel suggests that the methodology works best for alloys exhibiting a high strain hardening ratio.


2021 ◽  
Author(s):  
JINGYAO DAI ◽  
EVAN PINEDA ◽  
BRETT BEDNARCYK ◽  
JOGENDER SINGH ◽  
NAMIKO YAMAMOTO

Due to a unique combination of properties including high hardness, low density, chemical and thermal stability, semi-conductivity, and high neutron absorption, boron carbide (B C) is a potential candidate for various applications involving extreme environment. However, B C’s current application is limited because of its low fracture toughness. In this study, a hierarchical microstructure design with features including TiB grains and graphite platelets was used to toughen B C by simultaneously utilizing multiple toughening mechanisms including crack deflection, bridging, and micro-crack toughening. Using field-assisted sintering technology (FAST), B C composites with dense and hierarchical microstructure were fabricated. Previously, the fracture toughness of fabricated B C composites was measured at micro-scale using micro- indentation to have up to 56% improvement. In this work, the B C composites’ fracture toughness was characterized at macro-scale using four-point bending methods and compared with previous results obtained at micro-scale. Micromechanics modeling of fracture behaviors for B C-TiB composites was also performed to evaluate the contributions from experimentally observed toughening mechanisms. From four-point bending tests, B C composites reinforced with both TiB grains (~15 vol%) and graphite platelets (~8.7 vol%) exhibited the highest fracture toughness enhancement from 2.38 to 3.65 MPa·m1/2. The measured values were lower than those obtained using micro- indentation but maintained the general trends. The discrepancy between the indentation and four-point bending test results originated from the complex deformation behaviors triggered by the high contact load during indentation tests. Through micromechanics modeling, introduced thermal residual stress due to thermal expansion mismatch between B C and TiB , and weak interphases at B C-TiB boundaries were identified as the main causes for experimentally observed toughness enhancement. These results proved the effectiveness of hierarchical microstructure designs for B4C toughening and can provide reference for the future design of B4C composites with optimized microstructures for further fracture toughness enhancement.


Sign in / Sign up

Export Citation Format

Share Document