boundary condition
Recently Published Documents





Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 167
Rezwana Rahman ◽  
Haiping Zhu ◽  
Aibing Yu

Various simulations have been conducted to understand the macroscopic behavior of particles in the solid-gas flow in rotating drums in the past. In these studies, the no-slip wall boundary condition and fixed restitution coefficient between particles were usually adopted. The paper presents a numerical study of the gas-solid flow in a rotating drum to understand the effect of the specularity coefficient and restitution coefficient on the hydrodynamic behavior of particles in the segregation process. The volume fraction, granular pressure, granular temperature and their relationships are examined in detail. The boundary conditions of the no-slip and specularity coefficient of 1 are compared. In the simulations, two different sizes of particles with the same density are considered and the Eulerian–Eulerian multiphase model and the kinetic theory of granular flow (KTGF) are used. The results reveal that the hydrodynamical behavior of the particles in the rotating drum is affected by the boundary condition and restitution coefficient. In particular, the increase of specularity coefficient can increase the active region depth, angle repose, granular pressure for both small and large particles and granular temperature for large particles. With increasing restitution coefficient, the angle of repose decreases and granular pressure and temperature increase at the same volume fraction for both small and large particles.

Özgül İlhan ◽  
Niyazi Şahin

Abstract Large eddy simulation (LES) seeks to predict the dynamics of the organized structures in the flow, that is, local spatial averages u ̄ $\bar{u}$ of the velocity u of the fluid. Although LES has been extensively used to model turbulent flows, very often, the model has difficulty predicting turbulence generated by interactions of a flow with a boundary. A critical problem in LES is to find appropriate boundary conditions for the flow averages, which depend on the behavior of the unknown flow near the wall. In the light of the works of Navier and Maxwell, we use boundary conditions on the wall. We compute the appropriate friction coefficient β for channel flows and investigate its asymptotic behavior as the averaging radius δ → 0 and as the Reynolds number Re → ∞. No-slip conditions are recovered in the first limit, and free-slip conditions are recovered in the second limit. This study is not intended to develop new theories of the turbulent boundary layer; we use available boundary layer theories to improve numerical boundary conditions for flow averages.

Abiodun O. Ajibade ◽  
Tafida M. Kabir

Abstract The present article explores the effect of viscous dissipation on steady natural convection Couette flow subject to convective boundary condition. Due to the nonlinearity and coupling of the governing equations in the present situation, the homotopy perturbation method was employed to obtain the solutions of the energy and momentum equations. The impacts of the controlling parameters were investigated and discussed graphically. In the course of investigation, it was found that fluid temperature increases with an increase in viscous dissipation while the reverse trend was observed in fluid velocity. However, it was also discovered that heat generation leads to a decrease in the rate of heat transfer on the heated plate and it increases on the cold plate. Finally, it was concluded that the velocity boundary layer thickness increases with an increase in Biot number.

2022 ◽  
Vol 9 ◽  
Bangyu Wu ◽  
Wenzhuo Tan ◽  
Wenhao Xu ◽  
Bo Li

The large computational memory requirement is an important issue in 3D large-scale wave modeling, especially for GPU calculation. Based on the observation that wave propagation velocity tends to gradually increase with depth, we propose a 3D trapezoid-grid finite-difference time-domain (FDTD) method to achieve the reduction of memory usage without a significant increase of computational time or a decrease of modeling accuracy. It adopts the size-increasing trapezoid-grid mesh to fit the increasing trend of seismic wave velocity in depth, which can significantly reduce the oversampling in the high-velocity region. The trapezoid coordinate transformation is used to alleviate the difficulty of processing ununiform grids. We derive the 3D acoustic equation in the new trapezoid coordinate system and adopt the corresponding trapezoid-grid convolutional perfectly matched layer (CPML) absorbing boundary condition to eliminate the artificial boundary reflection. Stability analysis is given to generate stable modeling results. Numerical tests on the 3D homogenous model verify the effectiveness of our method and the trapezoid-grid CPML absorbing boundary condition, while numerical tests on the SEG/EAGE overthrust model indicate that for comparable computational time and accuracy, our method can achieve about 50% reduction on memory usage compared with those on the uniform-grid FDTD method.

2022 ◽  
Vol 12 (1) ◽  
Muhammad Ramzan ◽  
Nazia Shahmir ◽  
Hassan Ali S. Ghazwani ◽  
Kottakkaran Sooppy Nisar ◽  
Faizah M. Alharbi ◽  

AbstractSolar thermal systems have low efficiency due to the working fluid's weak thermophysical characteristics. Thermo-physical characteristics of base fluid depend on particle concentration, diameter, and shapes. To assess a nanofluid's thermal performance in a solar collector, it is important to first understand the thermophysical changes that occur when nanoparticles are introduced to the base fluid. The aim of this study is, therefore, to analyze the hydrodynamic and heat characteristics of two different water-based hybrid nanofluids (used as a solar energy absorber) with varied particle shapes in a porous medium. As the heat transfer surface is exposed to the surrounding environment, the convective boundary condition is employed. Additionally, the flow of nanoliquid between two plates (in parallel) is observed influenced by velocity slip, non-uniform heat source-sink, linear thermal radiation. To make two targeted hybrid nanofluids, graphene is added as a cylindrical particle to water to make a nanofluid, and then silver is added as a platelet particle to the graphene/water nanofluid. For the second hybrid nanofluid, CuO spherical shape particles are introduced to the graphene/water nanofluid. The entropy of the system is also assessed. The Tiwari-Das nanofluid model is used. The translated mathematical formulations are then solved numerically. The physical and graphical behavior of significant parameters is studied.

Sign in / Sign up

Export Citation Format

Share Document