scholarly journals Measurement of higher-order stress-strain effects in granular materials undergoing non-uniform deformation

2018 ◽  
Vol 92 ◽  
pp. 54-60
Author(s):  
Matthew R. Kuhn ◽  
Ching S. Chang
1996 ◽  
Vol 24 (1) ◽  
pp. 11-38 ◽  
Author(s):  
G. M. Kulikov

Abstract This paper focuses on four tire computational models based on two-dimensional shear deformation theories, namely, the first-order Timoshenko-type theory, the higher-order Timoshenko-type theory, the first-order discrete-layer theory, and the higher-order discrete-layer theory. The joint influence of anisotropy, geometrical nonlinearity, and laminated material response on the tire stress-strain fields is examined. The comparative analysis of stresses and strains of the cord-rubber tire on the basis of these four shell computational models is given. Results show that neglecting the effect of anisotropy leads to an incorrect description of the stress-strain fields even in bias-ply tires.


1981 ◽  
Vol 17 (5) ◽  
pp. 2055-2058 ◽  
Author(s):  
S. Nishijima ◽  
T. Okada ◽  
N. Yabuta ◽  
T. Horiuchi ◽  
K. Matsumoto ◽  
...  
Keyword(s):  

1999 ◽  
Vol 121 (2) ◽  
pp. 240-246 ◽  
Author(s):  
Y. Yasui ◽  
K. Shizawa ◽  
K. Takahashi

The essence of macroscopic quantities in solid mechanics can be grasped by expressing these quantities in terms of kinematic and mechanical quantities of atoms. In this paper, a method is proposed for obtaining the microscopic definitions of internal forces of continua such as stress, higher-order stresses and heat flux. Moreover, the relation between higher-order stress power and heat flux is discussed expressing the first law of thermodynamics with microscopic quantities in the mesodomain. Comparing heat flux with higher-order stress power, it is clarified that the divergence of heat flux is equivalent to the total of each order power due to higher-order stresses.


2008 ◽  
Vol 47-50 ◽  
pp. 1023-1026
Author(s):  
Yao Dai ◽  
Chang Qing Sun ◽  
Sun Qi ◽  
Wei Tan

Analytical expressions for crack-tip higher order stress functions for a plane crack in a special functionally graded material (FGM), which has an variation of elastic modulus in 1 2 power form along the gradient direction, are obtained through an asymptotic analysis. The Poisson’s ratio of the FGM is assumed to be constant in the analysis. The higher order fields in the asymptotic expansion display the influence of non-homogeneity on the structure of crack-tip fields obviously. Furthermore, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for non-homogeneity effects on the crack- tip stress fields. These results provide the basis for fracture analysis and engineering applications of this FGM.


Sign in / Sign up

Export Citation Format

Share Document