strain fields
Recently Published Documents


TOTAL DOCUMENTS

1090
(FIVE YEARS 170)

H-INDEX

53
(FIVE YEARS 5)

Author(s):  
J. P. M. Hoefnagels ◽  
K. van Dam ◽  
N. Vonk ◽  
L. Jacobs

Abstract Background 95% Of all metals and alloys are processed using strip rolling, explaining the great number of existing strip rolling optimization models. Yet, an accurate in-situ full-field experimental measurement method of the deformation, velocity and strain fields of the strip in the deformation zone is lacking. Objective Here, a novel time-Integrated Digital Image Correlation (t-IDIC) framework is proposed and validated that fully exploits the notion of continuous, recurring material motion during strip rolling. Methods High strain accuracy and robustness against unavoidable light reflections and missing speckles is achieved by simultaneously correlating many (e.g. 200) image pairs in a single optimization step, i.e. each image pair is correlated with the same average global displacement field but is multiplied by a unique velocity corrector to account for differences in material velocity between image pairs. Results Demonstration on two different strip rolling experiments revealed previously inaccessible subtle changes in the deformation and strain fields due to minor variations in pre-deformation, elastic recovery, and geometrical irregularities. The influence of the work roll force and entry/exit strip tension has been investigated for strip rolling with an industrial pilot mill, which revealed unexpected non-horizontal material feed. This asymmetry was reduced by increasing the entry strip tension and rolling force, resulting in a more symmetric strain distribution, while increased distance between the neutral and entry point was found for a larger rolling force. Conclusions The proposed t-IDIC method allows for robust and accurate characterization of the strip’s full-field behavior of the deformation zone during rolling, revealing novel insights in the material behavior.


2021 ◽  
Author(s):  
Ziqing Cai ◽  
Jinqiao Ye ◽  
Yunfan Zhang ◽  
Danli Nie ◽  
Ouyang Jianglin

Abstract The temperature and strain fields are two key factors in the regulation of fibrous aggregate structure. In this paper, plate specimens of polyamide 6 were prepared by compression molding method. The oriented polyamide 6 plates were systematically analyzed from aspects of mechanical properties, thermal properties, crystal structure and crystal morphology. The maximum tensile strength and elastic modulus of polyamide 6 plate appeared at 120℃. The stretching process induced the formation of a more thermal stable α-form crystals. With the increase of stretching temperature, α-form crystals transformed into γ-form crystals gradually. The crystal chips transformed into fibrils during the stretching process. The structural evolution model of materials under the temperature and strain fields was established.


Author(s):  
Mohamed Ali Bouaziz ◽  
Joseph Marae Djouda ◽  
François Hild

Additively manufactured materials usually exhibit mesoscale heterogeneities. Mesoscale fluctuations of strain fields in notched samples made of 17-4PH Stainless steel and loaded in tension are investigated. Regularized digital image correlation enables for the analysis of strain fluctuations at different length scales. Five tests on specimen fabricated with different printing parameters are studied. It is shown that the strain fluctuations have no characteristic length scale and are essentially independent of the probed processing parameters.


2021 ◽  
Vol 128 ◽  
pp. 110708
Author(s):  
Brendan Hoffe ◽  
Ashley Mazurkiewicz ◽  
Hannah Thomson ◽  
Rohan Banton ◽  
Thuvan Piehler ◽  
...  
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1745
Author(s):  
Vladimir V. Skripnyak ◽  
Vladimir A. Skripnyak

This article investigated the mechanical behavior of Ti-6Al-4V alloy (VT6, an analog to Ti Grade 5) in the range of strain rates from 0.1 to 103 s−1. Tensile tests with various notch geometries were performed using the Instron VHS 40/50-20 servo hydraulic testing machine. The Digital Image Correlation (DIC) analysis was employed to investigate the local strain fields in the gauge section of the specimen. The Keyence VHX-600D digital microscope was used to characterize full-scale fracture surfaces in terms of fractal dimension. At high strain rates, the analysis of the local strain fields revealed the presence of stationary localized shear bands at the initial stages of strain hardening. The magnitude of plastic strain within the localization bands was significantly higher than those averaged over the gauge section. It was found that the ultimate strain to fracture in the zone of strain localization tended to increase with the strain rate. At the same time, the Ti-6Al-4V alloy demonstrated a tendency to embrittlement at high stress triaxialities.


Author(s):  
Daniele Marras ◽  
Marco Palanca ◽  
Luca Cristofolini

The mechanical consequences of osteophytes are not completely clear. We aimed to understand whether and how the presence of an osteophyte perturbs strain distribution in the neighboring bone. The scope of this study was to evaluate the mechanical behavior induced by the osteophytes using full-field surface strain analysis in different loading configurations. Eight thoracolumbar segments, containing a vertebra with an osteophyte and an adjacent vertebra without an osteophyte (control), were harvested from six human spines. The position and size of the osteophytes were evaluated using clinical computed tomography imaging. The spine segments were biomechanically tested in the elastic regime in different loading configurations while the strains over the frontal and lateral surface of vertebral bodies were measured using digital image correlation. The strain fields in the vertebrae with and without osteophytes were compared. The correlation between osteophyte size and strain alteration was explored. The strain fields measured in the vertebrae with osteophytes were different from the control ones. In pure compression, we observed a mild trend between the size of the osteophyte and the strain distribution (R2 = 0.32, p = 0.15). A slightly stronger trend was found for bending (R2 = 0.44, p = 0.075). This study suggests that the osteophytes visibly perturb the strain field in the nearby vertebral area. However, the effect on the surrounding bone is not consistent. Indeed, in some cases the osteophyte shielded the neighboring bone, and in other cases, the osteophyte increased the strains.


Sign in / Sign up

Export Citation Format

Share Document