Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer

2008 ◽  
Vol 325 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Yi Li ◽  
Tai-Shung Chung ◽  
Youchang Xiao
2019 ◽  
Vol 15 (1) ◽  
pp. 50-53
Author(s):  
Kok Chung Chong ◽  
Yin Yin Chan ◽  
Woei Jye Lau ◽  
Soon Onn Lai ◽  
Ahmad Fauzi Ismail ◽  
...  

Oxygen enriched air (OEA) is widely applied in various areas such as chemical and medical applications. Currently, cryogenic distillation and pressure swing adsorption are the two common technologies that being commercially used for i the production of OEA. However, these two techniques are not economically favorable due to required intensive energy and large built-up area. With the advancement of membrane technology in separation process, it garners the interest from both industrial and academic to explore the feasibility of membrane in gas separation. In this study, polysulfone (PSF) hollow fiber membranes with poly(ether block amide) (PEBAX) coating were used for the separation of O2/N2 gas. The hollow fiber membranes used in this work were fabricated by phase inversion spinning process using PSF pellet, along with N,N-dimetyhlacetamide (DMAc) and ethanol (EtOH) as solvent and co-solvent, whereas tetrahydrofuran (THF) as additive. The fabricated membrane exhibited dense structure in the inner layer whereas finger like layer at the outer surface. The formation of this structure was attributed by rapid phase inversion of the solution arose from strong solvent used. The EDX surface mapping analysis confirmed the formation of PEBAX coating on the membrane surface. Gas permeation study in this work illustrated that the pristine PSF membrane exhibited better gas separation performance relative to the PEBAX coated membrane with 20% higher in terms of permeance. The results obtained from this work suggested that the PEBAX coating enhanced the membrane surface but not certain to improve the gas separation performance. Further study on the PEBAX materials for the membrane coating is essential to polish its potential in gas separation.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 583
Author(s):  
Georgy Kagramanov ◽  
Vladimir Gurkin ◽  
Elena Farnosova

The porous layer of composite and asymmetric hollow fiber membranes acts as a support and is exposed to strong mechanical stresses. The effect of external pressure on the polymer structure and, as a consequence, the separation characteristics of the membrane remains unsolved. Based on the solution of the Lamé approach to the calculation of the stress state of a hollow cylinder, a method of calculation was proposed for hollow fiber membranes. Calculations were based on the approximation of the isotropic nature of the physical and mechanical characteristics of the selective layer and substrate. Permissible deformation of the membrane’s selective layer was determined from the linear sector of strain-on-stress dependence, where Hooke’s law was performed. For these calculations, commercial polyethersulfone membranes were chosen with an inner and/or outer selective layer and with the following values of Young’s modulus of 2650 and 72 MPa for the selective and porous layers, respectively. The results obtained indicate that the dependence of the maximum allowable operating pressure on the substrate thickness asymptotically trends to a certain maximum value for a given membrane. Presented data showed that membranes with outer selective layer can be operated at higher working pressure. Optimal parameters for hollow fiber gas separation membrane systems should be realized, solving the optimization problem and taking into account the influence of operating, physicochemical and physicomechanical parameters on each other.


Sign in / Sign up

Export Citation Format

Share Document