membrane surface
Recently Published Documents


TOTAL DOCUMENTS

2759
(FIVE YEARS 701)

H-INDEX

101
(FIVE YEARS 11)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Afshin Hamta ◽  
Farzin Zokaee Ashtiani ◽  
Mohammad Karimi ◽  
Sareh Moayedfard

AbstractIn this paper, the concept of the functional mechanism of copolymer membrane formation is explained and analyzed from the theoretical and experimental points of view. To understand the phase inversion process and control the final membrane morphology, styrene-acrylonitrile copolymer (SAN) membrane morphology through the self-assembly phenomena is investigated. Since the analysis of the membrane morphology requires the study of both thermodynamic and kinetic parameters, the effect of different membrane formation conditions is investigated experimentally; In order to perceive the formation mechanism of the extraordinary structure membrane, a thermodynamic hypothesis is also developed based on the hydrophilic coil migration to the membrane surface. This hypothesis is analyzed according to Hansen Solubility Parameters and proved using EDX, SAXS, and contact angle analysis of SAN25. Moreover, the SAN30 membrane is fabricated under different operating conditions to evaluate the possibility of morphological prediction based on the developed hypothesis.


Author(s):  
Izabela Anna Tałałaj

Abstract Purpose In this paper the performance and effectiveness of the reverse osmosis (RO) process for the biologically pretreated leachate was investigated. The RO process was carried out separately for two different pH: 8.0 and 9.3. Methods A general pollution parameters as well as organic and inorganic indicators were determined in raw, biologically pretreated and RO treated leachate. The performance characteristics of the reverse osmosis system were made on the basis of permeate flux, electroconductivity removal rate, concentration factor and efficiency in removal of analyzed parameters. Results The use of SBR pretreatment had very good efficiency in BOD (97.3%) and ammonia nitrogen (95.4%) removal. The lowest effectivity was observed for chloride (11.6%), boron (3.9%) and TDS (1.2%). Pretreated leachate was subjected to RO system. The normalized average flux was 0.53 (42.3 L/m2·h) for pH = 8.0 and 0.68 (33.5 L/m2·h) for pH = 9.3. The lower membrane fouling at higher pH can be explained by electrostatic repulsion between the negatively charged membrane surface and organic substances. Independently of the process pH, a two-step membrane fouling was observed. The greatest differences in removal rates were observed for boron, which had a higher retention rate at higher pH, and ammonia nitrogen, whose removal rate decreased at higher pH. The obtained permeate pH after RO process was lower than the feed pH in two analyzed value of pH. Conclusions The higher flux value at pH = 9.3 is result of high content of organic matter in leachate, which is better rejected at higher pH because of higher electrostatic repulsion between organic matter and membrane surface. This indicates that the organic matter content should be taken into account when determining the operating parameters (pH values) of the RO system.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Miroslav Kukučka ◽  
Nikoleta Kukučka Stojanović

Commercial nanofiltration membranes of different molecular weight cut-offs were tested on a pilot plant for the exploration of permeation nature of Ca, Mg, Mn, Fe, Na and ammonium ions. Correlation of transmembrane pressure and rejection quotient versus volumetric flux efficiency on nanofiltration membrane rejection and permeability behavior toward hydrated divalent and monovalent ions separation from the natural groundwater was observed. Membrane ion rejection affinity (MIRA) dimension was established as normalized TMP with regard to permeate solute moiety representing pressure value necessary for solute rejection change of 1%. Ion rejection coefficient (IRC) was introduced to evaluate the membrane rejection capability, and to indicate the prevailed nanofiltration partitioning mechanism near the membrane surface. Positive values of the IRC indicated satisfactory rejection efficiency of the membrane process and its negative values ensigned very low rejection affinity and high permeability of the membranes for the individual solutes. The TMP quotient and the efficiency of rejection for individual cations showed upward and downward trends along with flux utilization increase. Nanofiltration process was observed as an equilibrium. The higher the Gibbs free energy was, cation rejection was more exothermic and valuably enlarged. Low Gibbs free energy values circumferentially closer to endothermic zone indicated expressed ions permeation.


2022 ◽  
Vol 10 (1) ◽  
pp. 137
Author(s):  
Ning Liu ◽  
Xue Wang ◽  
Qiang Shan ◽  
Le Xu ◽  
Yanan Li ◽  
...  

Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.


2022 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Anna M. Tryba ◽  
Małgorzata Krok-Borkowicz ◽  
Michał Kula ◽  
Natalia Piergies ◽  
Mateusz Marzec ◽  
...  

Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l-lactide-co-glycolide) (PLGA) membrane that was surface-modified with cell adhesive arginine-glycine-aspartic acid (RGD) motifs. For a novel method of membrane manufacture, the RGD motifs were coupled with the non-ionic amphiphilic polymer poly(2-oxazoline) (POx). The RGD-containing membranes were then prepared by solvent casting of PLGA, POx coupled with RGD (POx_RGD), and poly(ethylene glycol) (PEG) solution in methylene chloride (DCM), followed by DCM evaporation and PEG leaching. Successful coupling of RGD to POx was confirmed spectroscopically by Raman, Fourier transform infrared in attenuated reflection mode (FTIR-ATR), and X-ray photoelectron (XPS) spectroscopy, while successful immobilization of POx_RGD on the membrane surface was confirmed by XPS and FTIR-ATR. The resulting membranes had an asymmetric microstructure, as shown by scanning electron microscopy (SEM), where the glass-cured surface was more porous and had a higher surface area then the air-cured surface. The higher porosity should support bone tissue regeneration, while the air-cured side is more suited to preventing soft tissue infiltration. The behavior of osteoblast-like cells on PLGA membranes modified with POx_RGD was compared to cell behavior on PLGA foil, non-modified PLGA membranes, or PLGA membranes modified only with POx. For this, MG-63 cells were cultured for 4, 24, and 96 h on the membranes and analyzed by metabolic activity tests, live/dead staining, and fluorescent staining of actin fibers. The results showed bone cell adhesion, proliferation, and viability to be the highest on membranes modified with POx_RGD, making them possible candidates for GTR applications in periodontology and in bone tissue engineering.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 288
Author(s):  
Saleha Al-Mardeai ◽  
Emad Elnajjar ◽  
Raed Hashaikeh ◽  
Boguslaw Kruczek ◽  
Bart Van der Bruggen ◽  
...  

Hydrolysis is the heart of the lignocellulose-to-bioethanol conversion process. Using enzymes to catalyze the hydrolysis represents a more environmentally friendly pathway compared to other techniques. However, for the process to be economically feasible, solving the product inhibition problem and enhancing enzyme reusability are essential. Prior research demonstrated that a flat-sheet membrane bioreactor (MBR), using an inverted dead-end filtration system, could achieve 86.7% glucose yield from purified cellulose in 6 h. In this study, the effectiveness of flat-sheet versus radial-flow MBR designs was assessed using real, complex lignocellulose biomass, namely date seeds (DSs). The tubular radial-flow MBR used here had more than a 10-fold higher membrane surface area than the flat-sheet MBR design. With simultaneous product separation using the flat-sheet inverted dead-end filtration MBR, a glucose yield of 10.8% from pretreated DSs was achieved within 8 h of reaction, which was three times higher than the yield without product separation, which was only 3.5% within the same time and under the same conditions. The superiority of the tubular radial-flow MBR to hydrolyze pretreated DSs was confirmed with a glucose yield of 60% within 8 h. The promising results obtained by the novel tubular MBR could pave the way for an economic lignocellulose-to-bioethanol process.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaoming Zhang ◽  
Qingchen Lu ◽  
Nana Li

Abstract Membrane separation technology is widely used in wastewater purification, but the issue of membrane fouling could not be ignored. Hydrophilic modification is an effective method to reduce membrane fouling. Therefore, in this work, a hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membrane was prepared by polymer/non-solvent co-induced phase separation, and the effect of coagulation bath temperature on the membrane structure and performance was systematically investigated based on the previous study. With the increased of the coagulation bath temperature, the phase separation process changed from delayed to instantaneous, and the membrane surface changed from porous to dense, while the macropore structures and sponge-like pores appeared on the cross-section. Meanwhile, the pure water flux decreased from 229.3 L/(m2·h) to 2.08 L/(m2·h), the protein rejection rate increased from 83.87% to 100%, and the surface water contact angle increased from 63° to 90°. Thus, excessively high coagulation bath temperature adversely affected the permeate and separation performance, as well as antifouling performance of the membrane. This study enriched the research for preparing separation membranes by polymer/non-solvent co-induced phase separation and provided a practical and theoretical reference for controlling the membrane structure and properties by changing the coagulation bath temperature.


2022 ◽  
Author(s):  
Sthiti Porna Dutta ◽  
Anis Alam

Abstract DBN possess the ability to induce bladder tumor as well as in the liver, and oesophagus when it is administered in the body.Exposure to DBN can happen by different modes such as by ingestion,inhalation as well through dermal contact.In the present investigation an attempt has been done to identify ,isolate as well to purify he TAA from the liver mitochondria of the mice which was exposed to DBN. It was found that mitochondrial membrane surface protein of DBN-exposed animals exhibited differential expression when compared with the control animals. A low molecular weight (~14 kDa) protein was found to be over expressed on liver mitochondrial membrane upon DBN exposure in mice as compared with the normal control and identified as TAA, showing the sign that some of the proteins could be used as TAA for further study.These identification and molecular characterization of TAAs will provide the basis for the development of cancer vaccines targeting TAAs.


2022 ◽  
Vol 2022 (1) ◽  
pp. pdb.prot103135
Author(s):  
Edward A. Greenfield

A dot blot is widely used to determine the productivity of a given hybridoma. This assay can also be used to screen a fusion or subclone plate for productive hybridoma clones. First, a nitrocellulose membrane is coated with an affinity-purified goat or rabbit anti-mouse immunoglobulin and then incubated with hybridoma tissue culture supernatant. Monoclonal antibodies in the supernatant are then “captured” on the coated nitrocellulose membrane surface and detected by screening with horseradish peroxidase (HRP).


Author(s):  
Patricia Perez-Calleja ◽  
Emily Clements ◽  
Robert Nerenberg

The membrane aerated biofilm reactor (MABR) is a novel technology based on gas-supplying membranes that supply dissolved O2 (DO) to biofilms growing on the membrane surface. The counter-diffusion of dissolved...


Sign in / Sign up

Export Citation Format

Share Document