Desynchronization attacks resilient image watermarking scheme based on global restoration and local embedding

2013 ◽  
Vol 106 ◽  
pp. 42-50 ◽  
Author(s):  
Feng Ji ◽  
Cheng Deng ◽  
Lingling An ◽  
Dongyu Huang
2020 ◽  
Vol 10 (21) ◽  
pp. 7494
Author(s):  
Weitong Chen ◽  
Na Ren ◽  
Changqing Zhu ◽  
Qifei Zhou ◽  
Tapio Seppänen ◽  
...  

The screen-cam process, which is taking pictures of the content displayed on a screen with mobile phones or cameras, is one of the main ways that image information is leaked. However, traditional image watermarking methods are not resilient to screen-cam processes with severe distortion. In this paper, a screen-cam robust watermarking scheme with a feature-based synchronization method is proposed. First, the distortions caused by the screen-cam process are investigated. These distortions can be summarized into the five categories of linear distortion, gamma tweaking, geometric distortion, noise attack, and low-pass filtering attack. Then, a local square feature region (LSFR) construction method based on a Gaussian function, modified Harris–Laplace detector, and speeded-up robust feature (SURF) orientation descriptor is developed for watermark synchronization. Next, the message is repeatedly embedded in each selected LSFR by an improved embedding algorithm, which employs a non-rotating embedding method and a preprocessing method, to modulate the discrete Fourier transform (DFT) coefficients. In the process of watermark detection, we fully utilize the captured information and extract the message based on a local statistical feature. Finally, the experimental results are presented to illustrate the effectiveness of the method against common attacks and screen-cam attacks. Compared to the previous schemes, our scheme has not only good robustness against screen-cam attack, but is also effective against screen-cam with additional common desynchronization attacks.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 255
Author(s):  
Mario Gonzalez-Lee ◽  
Hector Vazquez-Leal ◽  
Luis J. Morales-Mendoza ◽  
Mariko Nakano-Miyatake ◽  
Hector Perez-Meana ◽  
...  

In this paper, we explore the advantages of a fractional calculus based watermarking system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking scheme and replaced the detection equation set by another set of equations derived from fractional calculus principles; then, we carried out a statistical assessment of the performance of both schemes by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage (FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a fractional equation based scheme has 48.3% more Area Under the Curve (AUC) and a False Positives Percentage median of 0.2% whilst the selected typical watermarking scheme has 3%. In addition, the experimental results suggest that the target applications of fractional schemes for detecting Gaussian watermarks are as a semi-fragile image watermarking systems robust to Gaussian noise.


Sign in / Sign up

Export Citation Format

Share Document