scholarly journals Learning to Estimate the Fiber Orientation Distribution Function from Diffusion-Weighted MRI

NeuroImage ◽  
2021 ◽  
pp. 118316
Author(s):  
Davood Karimi ◽  
Lana Vasung ◽  
Camilo Jaimes ◽  
Fedel Machado-Rivas ◽  
Simon K. Warfield ◽  
...  
2013 ◽  
Vol 785-786 ◽  
pp. 981-984 ◽  
Author(s):  
Zan Huang ◽  
Jin Ping Qu ◽  
Ji Wei Geng ◽  
Shu Feng Zhai ◽  
Shi Kui Jia

An orientation distribution function is adopted to describe three-dimensional orientation distribution of short fibers suspensions in extensional flow. A mathematical model of evolution process on fiber orientation distribution function is established by analytical method. Numerical simulation is also used to describe two and three dimensional orientation distribution of fibers. Therefore, analytical solution of differential equation on forecast fiber orientation distribution is deduced.


Materials ◽  
2005 ◽  
Author(s):  
David A. Jack ◽  
Douglas E. Smith

Material behavior of short-fiber composites can be found from the fiber orientation distribution function, with the only widely accepted procedure derived from the application of orientation/moment tensors. The use of orientation tensors requires a closure, whereby the higher order tensor is approximated as a function of the lower order tensor thereby introducing additional computational errors. We present material property expectation values computed directly from the fiber orientation distribution function, thereby alleviating the closure problem inherent to orientation tensors. Material properties are computed from statistically independent unidirectional fiber samples taken from the fiber orientation distribution function. The statistical nature of the distribution function is evaluated with Monte-Carlo simulations to obtain approximate stiffness tensors from the underlying unidirectional composite properties. Examples are presented for simple analytical distributions to demonstrate the effectiveness of expectation values and results are compared to properties obtained through orientation tensors. Results yield a value less than 1.5% for the coefficient of variation and suggest that the orientation tensor method for computing material properties is applicable only for the case of non-interacting fibers.


Sign in / Sign up

Export Citation Format

Share Document