material properties
Recently Published Documents





2022 ◽  
Vol 29 (3) ◽  
pp. 1-33
Kim Sauvé ◽  
Miriam Sturdee ◽  
Steven Houben

The standard definition for “physicalizations” is “a physical artifact whose geometry or material properties encode data”  [ 47 ]. While this working definition provides the fundamental groundwork for conceptualizing physicalization, in practice many physicalization systems go beyond the scope of this definition as they consist of distributed physical and digital elements that involve complex interaction mechanisms. In this article, we examine how “physicalization” is part of a broader ecology—the “physecology”—with properties that go beyond the scope of the working definition. Through analyzing 60 representative physicalization papers, we derived six design dimensions of a physecology: (i) represented data type, (ii) way of information communication, (iii) interaction mechanisms, (iv) spatial input–output coupling, (v) physical setup, and (vi) audiences involved. Our contribution is the extension of the definition of physicalization to the broader concept of “physecology,” to provide conceptual clarity on the design of physicalizations for future work.

2022 ◽  
David Abrecht ◽  
Pablo Moresco ◽  
Erik Nykwest ◽  
Ashley Shields

2022 ◽  
Vol 12 (1) ◽  
Christopher J. Stubbs ◽  
Ryan Larson ◽  
Douglas D. Cook

AbstractThe maize (Zea mays) stem is a biological structure that must balance both biotic and structural load bearing duties. These competing requirements are particularly relevant in the design of new bioenergy crops. Although increased stem digestibility is typically associated with a lower structural strength and higher propensity for lodging, with the right balance between structural and biological activities it may be possible to design crops that are high-yielding and have digestible biomass. This study investigates the hypothesis that geometric factors are much more influential in determining structural strength than tissue properties. To study these influences, both physical and in silico experiments were used. First, maize stems were tested in three-point bending. Specimen-specific finite element models were created based on x-ray computed tomography scans. Models were validated by comparison with experimental data. Sensitivity analyses were used to assess the influence of structural parameters such as geometric and material properties. As hypothesized, geometry was found to have a much stronger influence on structural stability than material properties. This information reinforces the notion that deficiencies in tissue strength could be offset by manipulation of stalk morphology, thus allowing the creation of stalks which are both resilient and digestible.

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Yuman Sun ◽  
He Xue ◽  
Kuan Zhao ◽  
Yubiao Zhang ◽  
Youjun Zhao ◽  

The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.

2022 ◽  
pp. 1-18
Gyani Shankar Sharma ◽  
Masahiro Toyoda ◽  
Alex Skvortsov ◽  
Ian MacGillivray ◽  
Nicole Kessissoglou

Abstract Time and frequency domain numerical models are developed to investigate the acoustic performance of metasurface coatings for marine applications. The coating designs are composed of periodic air-filled cavities embedded in a soft elastic medium, which is attached to a hard backing and submerged in water. Numerical results for a metamaterial coating with cylindrical cavities are favourably compared with analytical and experimental results from the literature. Frequencies associated with peak sound absorption as a function of the geometric parameters of the cavities and material properties of the host medium are predicted. Variation in the cavity dimensions that modifies the cylindrical-shaped cavities to flat disks or thin needles is modelled. Results reveal that high sound absorption occurs when either the diameter or length of the cavities is reduced. Physical mechanisms governing sound absorption for the various cavity designs are described.

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 107
Wenbo Zhang ◽  
Tao Hu ◽  
Yanting Chang ◽  
Benhua Fei ◽  
Yanjun Ma ◽  

Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), native to China, is one of the most economically and ecologically important bamboo species. Since the economic interests and the strong clonality, it has been widely cultivated in southern China, which inevitably reduces the natural stands and leads to gene loss in this species. In this study, three natural populations of Moso bamboo distributed in Anhui, Guangxi, and Zhejiang province, were used to analyze the correlation between phenotypic traits, cell structure, and material properties from the perspective of phenotypic, genetic, and environmental. Among those traits and properties, fiber width was correlated with wall thickness at breast height and average nodes length under branch positively. Leaf length was correlated positively with fiber lumen diameter and parenchyma lumen diameter. Furthermore, it showed a very close correlation between moisture content, bending strength, modulus of elasticity, and diameter at breast height, clear height, and leaf length. The lumen diameter of fiber cell wall thickness is positively correlated with bending strength and modulus of elasticity. Density is positively correlated with parenchyma cell wall thickness. The experimental design is relatively detailed and representative, and the workload is huge. This study reflects the research objectives with scientific and rational experiments and data. This study will analyze the differences of various indicators from the perspective of genetic to build a bridge between micro-structure and macro-structure for rational utilization of the whole area of Moso bamboo resources in China.

Yawen Yang ◽  
Lei Tian ◽  
Xi Chen ◽  
Jiayuan Wang ◽  
Yongyan Zhang ◽  

It is a challenge to handle the metal fixture used for cloth clamping in a computerized embroidery machine because of its fixed stiffness. Herein, a prototype that acts as a fixture to provide variable stiffness property is explored by discussing the potential of a thermal-sensitive epoxy resin-based shape memory polymer (SMP). The general model of fixture design is obtained after analyzing the working condition of the metal fixture. The structure of the SMP fixture is designed by discussing the material properties and working requirements of SMP, and a theoretical model is established to deduce the relationship between thickness and stiffness of the fixture. Six SMP fixtures that memorized clamping and opening state were manufactured with different proportions of raw materials. The results show that the designed fixtures have a lighter weight but higher clamping force than the metal fixture at room temperature (RT). It is the first work that demonstrates the potential of the SMP fixture to replace the metal fixture in the computerized embroidery machine and provides inspiration for product design with variable stiffness characteristic in engineering.

Sign in / Sign up

Export Citation Format

Share Document