Analysis of loss of coolant accident without ECCS and DHRS in an integral pressurized water reactor using RELAP/SCDAPSIM

2021 ◽  
Vol 134 ◽  
pp. 103648
Author(s):  
Katarzyna Skolik ◽  
Chris Allison ◽  
Judith Hohorst ◽  
Mateusz Malicki ◽  
Marina Perez-Ferragut ◽  
...  
2016 ◽  
Vol 157 ◽  
pp. 333-340 ◽  
Author(s):  
Michał Pawluczyk ◽  
Piotr Mazgaj ◽  
Sebastian Gurgacz ◽  
Michał Gatkowski ◽  
Piotr Darnowski

Author(s):  
Salwa Helmy ◽  
Magy Kandil ◽  
Ahmed Refaey

In Nuclear Power Plants the Design Extension Conditions are more complex and severe than those postulated as Design Basis Accidents, therefore, they must be taken into account in the safety analyses. In this study, many hypothetical investigated transients are applied on KONVOI pressurized water reactor during a 6-in. (182 cm2) cold leg Small Break Loss-of-Coolant-Accident to revise the effects of all safety systems ways through their availability/ nonavailability on the thermal hydraulic behaviour of the reactor. The investigated transients are represented through three cases of Small Break Loss-of-Coolant-Accident as, case-1, without scram and all of the safety systems are failure, case-2, the normal scram actuation with failure of all safety systems (nonavailability), and finally case 3, with normal actuation scram sequence and normal sequential actuation of all safety systems (availability). These three investigated transient cases are simulated by creation a model using Analysis of Thermal-Hydraulics of LEaks and Transient code. In all transient cases, all types of reactivity feedbacks, boron, moderator density, moderator temperature and fuel temperature are considered. The steady-state results are nearly in agreement with the plant parameters available in previous literatures. The results show the importance effects of the feedbacks reactivity at Loss-of-Coolant-Accident on the fallouts power, since they are considered the key parameters for controlling the clad and fuel temperatures to maintain them below their melting point. Moreover, the calculated results in all cases show that the thermal hydraulic parameters are in acceptable ranges and encounter the safety criterion during Loss-of-Coolant-Accident the Design Extension Conditions accidents processes. Furthermore, the results show that the core uncovers and fuel heat up do not occur in KONVOI pressurized water reactor in theses the Design Extension Conditions simulations since, all safety systems provide adequate core cooling by sufficient water inventory into the core to cover it.


Sign in / Sign up

Export Citation Format

Share Document