pressurized water
Recently Published Documents


TOTAL DOCUMENTS

3240
(FIVE YEARS 559)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Vol 166 ◽  
pp. 108803
Author(s):  
Yinghao Chen ◽  
Dongdong Wang ◽  
Cao Kai ◽  
Cuijie Pan ◽  
Yayun Yu ◽  
...  

2022 ◽  
Vol 166 ◽  
pp. 108801
Author(s):  
Yuchen Huo ◽  
Hao Yu ◽  
Mingjun Wang ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
...  

Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinfeng Huang ◽  
Jiaming Jiang

Abstract For post-Fukushima nuclear power plants, there has been interested in accident-tolerant fuel (ATF) since it has better tolerant in the event of a severe accident. The fully ceramic microencapsulated (FCM) fuel is one kind of the ATF materials. In this study, the small modular pressurized water reactor (PWR) loading with FCM fuels was investigated, and the modified Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor (CANDLE) burnup strategy was successfully applied to such compact reactor core. To obtain ideal CANDLE shape, it’s necessary to set the infinity or enough length of the core height, but that is impossible for small compact core setting infinity or enough length of the core height. Due to the compact and finite core, the equilibrium state can only be maintained short periods and is not obvious, other than infinitely long active core to reach the long equilibrium state for ideal CANDLE. Consequently, the modified CANDLE shape would be presented. The approximate characteristics of CANDLE burnup are observed in the finite and compact core, and the power density and fuel burnup are selected as main characteristic of modified CANDLE burnup. In this study, firstly, lots of optimization schemes were discussed, and one of optimization schemes was chosen at last to demonstrate the modified CANDLE burnup strategy. Secondly, for chosen compact small rector core, the modified CANDLE burnup strategy is applied and presented. Consequently, the new characteristics of this reactor core can be discovered both in ignition region and in fertile region. The results show that application of CANDLE burnup strategy to small modular PWR loading with FCM fuels suppresses the excess reactivity effectively and reduces the risk of small PWR reactivity-induced accidents during the whole core life, which makes the reactor control more safety and simple.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yuman Sun ◽  
He Xue ◽  
Kuan Zhao ◽  
Yubiao Zhang ◽  
Youjun Zhao ◽  
...  

The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Yuman Sun ◽  
He Xue ◽  
Fuqiang Yang ◽  
Shuai Wang ◽  
Shun Zhang ◽  
...  

The material mechanical properties and crack propagation behavior of dissimilar metal welded joint (DMWJ) of pressurized water reactor (PWR) was investigated. In this research, the mechanical parameters of the cladding layer materials (304L-SA508) of the DMWJ in PWRs were obtained by the continuous indentation test. Simultaneously, the user-defined (USDFLD) subroutine in ABAQUS was used to establish the heterogeneous materials model of the welded joint. On this basis, the local crack propagation path of DMWJs has been discussed based on the extended finite element method (XFEM). The result indicated that the strength value at the fusion boundary line (FB line) is the largest, and the yield strength reaches 689 MPa. The yield stress values of the cladding metal (304 L) and base metal (SA508) are 371 MPa and 501 MPa, respectively. Affected by the material constraint effect of the DMWJ, the crack will propagate through the FB line when the initial crack is perpendicular to the FB line. And when the initial crack parallels the FB line, the crack will deviate from it. Meanwhile, the crack propagation length is smaller as the initial crack tip is closer to the FB line when the load condition is constant.


Sign in / Sign up

Export Citation Format

Share Document