Structural diversity of copper(II) complexes with three dimensional network: Crystal structure, Hirshfeld surface analysis, DFT calculations and catalytic activity

Polyhedron ◽  
2021 ◽  
pp. 115633
Author(s):  
Dinesh Kumhar ◽  
Ram N. Patel ◽  
Satish K. Patel ◽  
Abhay K. Patel ◽  
Neetu Patel ◽  
...  
2019 ◽  
Vol 75 (10) ◽  
pp. 1544-1547 ◽  
Author(s):  
Gulnara Sh. Duruskari ◽  
Ali N. Khalilov ◽  
Mehmet Akkurt ◽  
Gunay Z. Mammadova ◽  
Taras Chyrka ◽  
...  

In the cation of the title salt, C9H12N3S+·Br−, the thiazolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H...Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking interactions between the phenyl rings of adjacent cations also contribute to the molecular packing. A Hirshfeld surface analysis was conducted to quantify the contributions of the different intermolecular interactions and contacts.


Author(s):  
Nur Hafiq Hanif Hassan ◽  
Amzar Ahlami Abdullah ◽  
Suhana Arshad ◽  
Nuridayanti Che Khalib ◽  
Ibrahim Abdul Razak

In the title chalcone derivative, C16H11ClF2O2, the enone group adopts anEconformation. The dihedral angle between the benzene rings is 0.47 (9)° and an intramolecular C—H...F hydrogen bond closes anS(6) ring. In the crystal, molecules are linked into a three-dimensional network by C—H...O hydrogen bonds and aromatic π–π stacking interactions are also observed [centroid–centroid separation = 3.5629 (18) Å]. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis.


Author(s):  
Afef Guesmi ◽  
Sofian Gatfaoui ◽  
Thierry Roisnel ◽  
Houda Marouani

The crystal structure of the title salt {systematic name: [1,3-phenylenebis(methylene)]bis(azanium) sulfate}, C8H14N22+·SO42−, consists of infinite (100) sheets of alternating organic and inorganic entities Them-xylylenediaminium cations are linked to the sulfate anions by N—H...O and asymmetric bifurcated N—H...(O,O) hydrogen bonds, generating a three-dimensional network. A weak C—H...O interaction also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H...O/O...H and H...H contacts.


2018 ◽  
Vol 74 (11) ◽  
pp. 1599-1604 ◽  
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Flavien A. A. Toze ◽  
Pavel V. Dorovatovskii ◽  
Narmina A. Guliyeva ◽  
...  

The title molecule, C18H16F3NO7, comprises a fused cyclic system containing four five-membered (two dihydrofuran and two tetrahydrofuran) rings and one six-membered (piperidine) ring. The five-membered dihydrofuran and tetrahydrofuran rings adopt envelope conformations, and the six-membered piperidine ring adopts a distorted chair conformation. Intramolecular O...F interactions help to stabilize the conformational arrangement. In the crystal structure, molecules are linked by weak C—H...O and C—H...F hydrogen bonds, forming a three-dimensional network. The Hirshfeld surface analysis confirms the dominant role of H...H contacts in establishing the packing.


Author(s):  
Nur Adibah Binti Mohd Amin ◽  
Rusnah Syahila Duali Hussen ◽  
See Mun Lee ◽  
Nathan R. Halcovitch ◽  
Mukesh M. Jotani ◽  
...  

The SnIVatom in the title diorganotin compound, [Sn(C7H6F)2Cl2(C2H6OS)2], is located on a centre of inversion, resulting in the C2Cl2O2donor set having an all-transdisposition of like atoms. The coordination geometry approximates an octahedron. The crystal features C—H...F, C—H...Cl and C—H...π interactions, giving rise to a three-dimensional network. The respective influences of the Cl...H/H...Cl and F...H/H...F contacts to the molecular packing are clearly evident from the analysis of the Hirshfeld surface.


Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


2017 ◽  
Vol 73 (8) ◽  
pp. 1197-1201
Author(s):  
Mónica Soto-Monsalve ◽  
Elkin L. Romero ◽  
Fabio Zuluaga ◽  
Manuel N. Chaur ◽  
Richard F. D'Vries

In the title compound, C18H20N2O7, the dihedral angle between the aromatic rings is 7.28 (7)° and the almost planar conformation of the molecule is supported by an intramolecular O—H...O hydrogen bond, which closes an S(6) ring. In the crystal, weak C—H...O hydrogen bonds and aromatic π–π stacking link the molecules into a three-dimensional network. A Hirshfeld surface analysis showed that the major contribution to the intermolecular interactions are van der Waals interactions (H...H contacts), accounting for 48.4% of the surface.


Author(s):  
A. Jaquelin Cárdenas-Valenzuela ◽  
Gerardo González-García ◽  
Ramón Zárraga- Nuñez ◽  
Herbert Höpfl ◽  
José J. Campos-Gaxiola ◽  
...  

In the title compound, C7H6BNO2, the mean plane of the –B(OH)2 group is twisted by 21.28 (6)° relative to the cyanophenyl ring mean plane. In the crystal, molecules are linked by O—H...O and O—H...N hydrogen bonds, forming chains propagating along the [101] direction. Offset π–π and B...π stacking interactions link the chains, forming a three-dimensional network. Hirshfeld surface analysis shows that van der Waals interactions constitute a further major contribution to the intermolecular interactions, with H...H contacts accounting for 25.8% of the surface.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Gunay Z. Mammadova ◽  
Sixberth Mlowe

In the cation of the title salt, C30H28NO2 +·CF3O3S−, the four tetrahydrofuran rings adopt envelope conformations. In the crystal, pairs of cations are linked by dimeric C—H...O hydrogen bonds, forming two R 2 2(6) ring motifs parallel to the (001) plane. The cations and anions are connected by further C—H...O hydrogen bonds, forming a three-dimensional network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (47.6%), C...H/H...C (20.6%), O...H/H...O (18.0%) and F...H/H...F (9.9%) interactions.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


Sign in / Sign up

Export Citation Format

Share Document