scholarly journals A Deep Convolution Neural Network Model for Vehicle Recognition and Face Recognition

2017 ◽  
Vol 107 ◽  
pp. 715-720 ◽  
Author(s):  
Xingcheng Luo ◽  
Ruihan Shen ◽  
Jian Hu ◽  
Jianhua Deng ◽  
Linji Hu ◽  
...  

Offline Signature recognition plays an important role in Forensic issues. In this paper, we explore Signature Identification and Verification using features extracted from pretrained Convolution Neural Network model (Alex Net). All the experiments are performed on signatures from three dataset (SigComp2011) (Dutch, Chinese), SigWiComp2013 (Japanese) and SigWIcomp2015 (Italian). The result shows that features extracted from pretrained Deep Convolution neural network and SVM as classifier show better results than that of Decision Tree. The accuracy of more than 96% for Japanese, Italian, Dutch and Chinese Signatures is obtained with Deep Convolution neural network and SVM as classifier.


2020 ◽  
pp. short17-1-short17-8
Author(s):  
Fedor Shvetsov ◽  
Anton Konushin ◽  
Anna Sokolova

In this work, we consider the applicability of the face recognition algorithms to the data obtained from a dynamic vision sensor. A basic method using a neural network model comprised of reconstruction, detection, and recognition is proposed that solves this problem. Various modifications of this algorithm and their influence on the quality of the model are considered. A small test dataset recorded on a DVS sensor is collected. The relevance of using simulated data and different approaches for its creation for training a model was investigated. The portability of the algorithm trained on synthetic data to the data obtained from the sensor with the help of fine-tuning was considered. All mentioned variations are compared to one another and also compared with conventional face recognition from RGB images on different datasets. The results showed that it is possible to use DVS data to perform face recognition with quality similar to that of RGB data.


2020 ◽  
Vol 2 (2) ◽  
pp. 23
Author(s):  
Lei Wang

<p>As an important research achievement in the field of brain like computing, deep convolution neural network has been widely used in many fields such as computer vision, natural language processing, information retrieval, speech recognition, semantic understanding and so on. It has set off a wave of neural network research in industry and academia and promoted the development of artificial intelligence. At present, the deep convolution neural network mainly simulates the complex hierarchical cognitive laws of the human brain by increasing the number of layers of the network, using a larger training data set, and improving the network structure or training learning algorithm of the existing neural network, so as to narrow the gap with the visual system of the human brain and enable the machine to acquire the capability of "abstract concepts". Deep convolution neural network has achieved great success in many computer vision tasks such as image classification, target detection, face recognition, pedestrian recognition, etc. Firstly, this paper reviews the development history of convolutional neural networks. Then, the working principle of the deep convolution neural network is analyzed in detail. Then, this paper mainly introduces the representative achievements of convolution neural network from the following two aspects, and shows the improvement effect of various technical methods on image classification accuracy through examples. From the aspect of adding network layers, the structures of classical convolutional neural networks such as AlexNet, ZF-Net, VGG, GoogLeNet and ResNet are discussed and analyzed. From the aspect of increasing the size of data set, the difficulties of manually adding labeled samples and the effect of using data amplification technology on improving the performance of neural network are introduced. This paper focuses on the latest research progress of convolution neural network in image classification and face recognition. Finally, the problems and challenges to be solved in future brain-like intelligence research based on deep convolution neural network are proposed.</p>


Sign in / Sign up

Export Citation Format

Share Document