decision tree
Recently Published Documents


TOTAL DOCUMENTS

9859
(FIVE YEARS 5122)

H-INDEX

94
(FIVE YEARS 30)

2022 ◽  
Vol 8 ◽  
Author(s):  
Qing Chen ◽  
Ji Zhang ◽  
Banghe Bao ◽  
Fan Zhang ◽  
Jie Zhou

The early clinical symptoms of gastric cancer are not obvious, and metastasis may have occurred at the time of treatment. Poor prognosis is one of the important reasons for the high mortality of gastric cancer. Therefore, the identification of gastric cancer-related genes can be used as relevant markers for diagnosis and treatment to improve diagnosis precision and guide personalized treatment. In order to further reveal the pathogenesis of gastric cancer at the gene level, we proposed a method based on Gradient Boosting Decision Tree (GBDT) to identify the susceptible genes of gastric cancer through gene interaction network. Based on the known genes related to gastric cancer, we collected more genes which can interact with them and constructed a gene interaction network. Random Walk was used to extract network association of each gene and we used GBDT to identify the gastric cancer-related genes. To verify the AUC and AUPR of our algorithm, we implemented 10-fold cross-validation. GBDT achieved AUC as 0.89 and AUPR as 0.81. We selected four other methods to compare with GBDT and found GBDT performed best.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Cong Gu

Finance, as the core of the modern economy, supports sustained economic growth through financing and distribution. With the continuous development of the market economy, finance plays an increasingly important role in economic development. A new economic and financial phenomenon, known as financial intervention, has emerged in recent years, which has created a series of new problems, promoting the rapid increase both in credit and investment and causing many problems on normal operation of financial bodies. In the long run, it will inevitably affect the stability and soundness of the entire economic and financial system. In order to maximize the effect of financial intervention, in response to the above problems, this article uses a series of US practices in financial intervention as the survey content, combined with the loan data provided by the US government financial intervention department, and mines the data of the general C4.5 algorithm of the decision tree algorithm. Generate a decision tree and convert it into classification rules. Next, we will discover the laws hidden behind the loan data, further discover information that may violate relevant financial policies, provide a reliable basis for financial intervention, and improve the efficiency of financial intervention. Experiments show that the method used in this article can effectively solve the above problems and has certain practicability in fiscal intervention. With stratified sampling, the risky accuracy rate increased by 10%, probably because stratified sampling increased the number of high-risk samples.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lin Chen ◽  
Xiaolong Chen ◽  
Hongxin Wang ◽  
Lin Zhu ◽  
Lingyun Lang

Traditional settlements are widely concerned by academic circles for their unique settlement patterns, exquisite residential buildings, and rich historical and cultural connotations, and their protection and development is an important proposition for rural revitalization. Therefore, from the perspective of big data mining (BDM), this paper explores its application in architectural space and settlement protection of traditional settlements in Hainan and provides new ideas for the protection and renewal of traditional settlements in Hainan. The attribute elements of spatial data of settlement groups are analyzed by the decision tree classification mining method. In order to avoid the multivalued tendency of ID3 algorithm and improve the efficiency of decision tree generation by ID3 algorithm, an improved ID3 algorithm is proposed by introducing user interest and simplifying the calculation process of the algorithm. At the same time, the graph theory recognition method of grid pattern is proposed. Aiming at the intersection graph and direction relation graph of straight line pattern, grid pattern recognition is realized by solving the connectivity, intersection, and subsequent construction of the maximum complete subgraph. Experiments show that the improved ID3 algorithm has better running efficiency than the parallel algorithm based on cooccurrence matrix. The analysis of the architectural space of traditional settlements in Hainan will help us better grasp social activities and provide direction for the protection and renewal of traditional settlements from the perspective of tourists and residents.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Li Chen ◽  
Meiling Miao

With the continuous development of China’s cultural industry, people’s health has become one of the topics of the highest concern. Therefore, all the application models of physical health test data in the actual analysis have become the current research focus and trend direction of healthy constitution. This paper summarizes the significant problems in the analysis of physical health test data, through the comprehensive analysis and investigation of physical health test data, combined with the measurement of the test indicators, through the analysis and processing system of youth physical health data, the use process of national youth group physical health standard data management software, and decision tree intelligent algorithm in physical health. The research steps of test data analysis and application model summarize the application characteristics of physical health test data in the application process. Based on this, a decision tree intelligent algorithm is proposed, and the corresponding functions and optimization formulas of the algorithm are substituted. In the process of actual sample checking calculation, each weight range and corresponding errors are inferred and analyzed by combining examples. This paper summarizes the application model and optimization model of health test data analysis based on decision tree intelligent algorithm. Through the repeated test of the research data, the feasible area and application scope of the algorithm are obtained, and the practical optimization scheme and application ideas under the algorithm are obtained.


Sign in / Sign up

Export Citation Format

Share Document