scholarly journals COVID-19: Role of neutrophil extracellular traps in acute lung injury

2020 ◽  
Vol 58 (5) ◽  
pp. 419-420 ◽  
Author(s):  
Ahmed Yaqinuddin ◽  
Peter Kvietys ◽  
Junaid Kashir
Author(s):  
Axelle Caudrillier ◽  
Ming Hu ◽  
John Nguyen ◽  
Kai Kessenbrock ◽  
Mark R. Looney

2014 ◽  
Vol 307 (7) ◽  
pp. L586-L596 ◽  
Author(s):  
Lingtao Luo ◽  
Su Zhang ◽  
Yongzhi Wang ◽  
Milladur Rahman ◽  
Ingvar Syk ◽  
...  

Excessive neutrophil activation is a major component in septic lung injury. Neutrophil-derived DNA may form extracellular traps in response to bacterial invasions. The aim of the present study was to investigate the potential role of neutrophil extracellular traps (NETs) in septic lung injury. Male C57BL/6 mice were treated with recombinant human (rh)DNAse (5 mg/kg) after cecal ligation and puncture (CLP). Extracellular DNA was stained by Sytox green, and NET formation was quantified by confocal microscopy and cell-free DNA in plasma, peritoneal cavity, and lung. Blood, peritoneal fluid, and lung tissue were harvested for analysis of neutrophil infiltration, NET levels, tissue injury, as well as CXC chemokine and cytokine formation. We observed that CLP caused increased formation of NETs in plasma, peritoneal cavity, and lung. Administration of rhDNAse not only eliminated NET formation in plasma, peritoneal cavity, and bronchoalveolar space but also reduced lung edema and tissue damage 24 h after CLP induction. Moreover, treatment with rhDNAse decreased CLP-induced formation of CXC chemokines, IL-6, and high-mobility group box 1 (HMGB1) in plasma, as well as CXC chemokines and IL-6 in the lung. In vitro, we found that neutrophil-derived NETs had the capacity to stimulate secretion of CXCL2, TNF-α, and HMGB1 from alveolar macrophages. Taken together, our findings show that NETs regulate pulmonary infiltration of neutrophils and tissue injury via formation of proinflammatory compounds in abdominal sepsis. Thus we conclude that NETs exert a proinflammatory role in septic lung injury.


2021 ◽  
Vol 22 (16) ◽  
pp. 8854
Author(s):  
Monika Szturmowicz ◽  
Urszula Demkow

Neutrophil extracellular traps (NETs), built from mitochondrial or nuclear DNA, proteinases, and histones, entrap and eliminate pathogens in the course of bacterial or viral infections. Neutrophils’ activation and the formation of NETs have been described as major risk factors for acute lung injury, multi-organ damage, and mortality in COVID-19 disease. NETs-related lung injury involves both epithelial and endothelial cells, as well as the alveolar-capillary barrier. The markers for NETs formation, such as circulating DNA, neutrophil elastase (NE) activity, or myeloperoxidase-DNA complexes, were found in lung specimens of COVID-19 victims, as well as in sera and tracheal aspirates obtained from COVID-19 patients. DNA threads form large conglomerates causing local obstruction of the small bronchi and together with NE are responsible for overproduction of mucin by epithelial cells. Various components of NETs are involved in the pathogenesis of cytokine storm in SARS-CoV-2 pulmonary disease. NETs are responsible for the interplay between inflammation and thrombosis in the affected lungs. The immunothrombosis, stimulated by NETs, has a poor prognostic significance. Better understanding of the role of NETs in the course of COVID-19 can help to develop novel approaches to the therapeutic interventions in this condition.


JCI Insight ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Emma Lefrançais ◽  
Beñat Mallavia ◽  
Hanjing Zhuo ◽  
Carolyn S. Calfee ◽  
Mark R. Looney

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-18-SCI-18 ◽  
Author(s):  
Mark R. Looney

Abstract Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality in the U.S. and a major cause of transfusion-associated morbidity including increased time on mechanical ventilation and length of stay in the intensive care unit and the hospital. Neutrophils have been identified as critical cellular mediators in the pathogenesis of TRALI in both clinical studies and in experimental settings using a variety of injury models. Platelets have been implicated as a blood product that can trigger TRALI, and endogenous platelet activation contributes to lung injury. Platelets bind to the surface of neutrophils to form heterotypic aggregates, and activated platelets can trigger the formation of neutrophil extracellular traps (NETs), which is a new mode of neutrophil death that is distinct from apoptosis and necrosis. NETs are produced in experimental TRALI and are increased in post-transfusion plasma from patients who develop TRALI. Blocking platelet activation reduces the production of NETs and lung injury, and inhibiting NETs by blocking extracellular histones or dismantling the NET structure with DNase1 are strongly protective in TRALI. In conclusion, TRALI is an immune-mediated event in which activated platelets, neutrophils, and NETs, contribute to injury and are therefore targets for therapeutic intervention. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document