International Journal of Molecular Sciences
Latest Publications


TOTAL DOCUMENTS

46805
(FIVE YEARS 30223)

H-INDEX

159
(FIVE YEARS 48)

Published By Mdpi Ag

1422-0067

2022 ◽  
Vol 23 (2) ◽  
pp. 953
Author(s):  
Anna Jaruga ◽  
Jakub Ksiazkiewicz ◽  
Krystian Kuzniarz ◽  
Przemko Tylzanowski

Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic—NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype–phenotype correlations. We then present the animal models used to study these defects.


2022 ◽  
Vol 23 (2) ◽  
pp. 971
Author(s):  
Juliana S. Ribeiro ◽  
Eliseu A. Münchow ◽  
Ester A. F. Bordini ◽  
Nathalie S. Rodrigues ◽  
Nileshkumar Dubey ◽  
...  

This study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey’s test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.


2022 ◽  
Vol 23 (2) ◽  
pp. 948
Author(s):  
Urszula Wójcik-Bojek ◽  
Barbara Różalska ◽  
Beata Sadowska

The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.


2022 ◽  
Vol 23 (2) ◽  
pp. 969
Author(s):  
Michał Wągrodzki ◽  
Andrzej Tysarowski ◽  
Katarzyna Seliga ◽  
Aneta Wojnowska ◽  
Maria Stepaniuk ◽  
...  

To validate the reliability and implementation of an objective diagnostic method for giant cell tumour of bone (GCTB). H3-3A gene mutation testing was performed using two different methods, Sanger sequencing and immunohistochemical (IHC) assays. A total of 214 patients, including 120 with GCTB and 94 with other giant cell-rich bone lesions, participated in the study. Sanger sequencing and IHC with anti-histone H3.3 G34W and G34V antibodies were performed on formalin-fixed, paraffin-embedded tissues, which were previously decalcified in EDTA if needed. The sensitivity and specificity of the molecular method was 100% (95% CI: 96.97–100%) and 100% (95% CI: 96.15–100%), respectively. The sensitivity and specificity of IHC was 94.32% (95% CI: 87.24–98.13%) and 100% (95% CI: 93.94–100.0%), respectively. P.G35 mutations were discovered in 2/9 (22.2%) secondary malignant GCTBs and 9/13 (69.2%) GCTB after denosumab treatment. We confirmed in a large series of patients that evaluation of H3-3A mutational status using direct sequencing is a reliable tool for diagnosing GCTB, and it should be incorporated into the diagnostic algorithm. Additionally, we discovered IHC can be used as a screening tool. Proper tissue processing and decalcification are necessary. The presence of the H3-3A mutation did not exclude malignant GCTB. Denosumab did not eradicate the neoplastic cell population of GCTB.


2022 ◽  
Vol 23 (2) ◽  
pp. 950
Author(s):  
Rosaria Russo ◽  
Margherita Romeo ◽  
Tim Schulte ◽  
Martina Maritan ◽  
Luca Oberti ◽  
...  

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


2022 ◽  
Vol 23 (2) ◽  
pp. 960
Author(s):  
Jean-Denis Troadec ◽  
Stéphanie Gaigé ◽  
Manon Barbot ◽  
Bruno Lebrun ◽  
Rym Barbouche ◽  
...  

The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.


2022 ◽  
Vol 23 (2) ◽  
pp. 967
Author(s):  
Ekaterina A. Trifonova ◽  
Zakhar S. Mustafin ◽  
Sergey A. Lashin ◽  
Alex V. Kochetov

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by the early onset of communication and behavioral problems. ASD is highly heritable; however, environmental factors also play a considerable role in this disorder. A significant part of both syndromic and idiopathic autism cases could be attributed to disorders caused by mammalian target of rapamycin (mTOR)-dependent translation deregulation. This narrative review analyzes both bioinformatic and experimental evidence that connects mTOR signaling to the maternal autoantibody-related (MAR) autism spectrum and autoimmune neuropsychiatric disorders simultaneously. In addition, we reconstruct a network presenting the interactions between the mTOR signaling and eight MAR ASD genes coding for ASD-specific maternal autoantibody target proteins. The research discussed in this review demonstrates novel perspectives and validates the need for a subtyping of ASD on the grounds of pathogenic mechanisms. The utter necessity of designing ELISA-based test panels to identify all antibodies related to autism-like behavior is also considered.


2022 ◽  
Vol 23 (2) ◽  
pp. 965
Author(s):  
Mina Han ◽  
Ikue Abe ◽  
Jihun Oh ◽  
Jaehoon Jung ◽  
Young Ji Son ◽  
...  

Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.


2022 ◽  
Vol 23 (2) ◽  
pp. 973
Author(s):  
Federica Barbagallo ◽  
Sandro La La Vignera ◽  
Rossella Cannarella ◽  
Laura M. Mongioì ◽  
Vincenzo Garofalo ◽  
...  

Obesity is a major current public health problem of global significance. A progressive sperm quality decline, and a decline in male fertility, have been reported in recent decades. Several studies have reported a strict relationship between obesity and male reproductive dysfunction. Among the many mechanisms by which obesity impairs male gonadal function, sirtuins (SIRTs) have an emerging role. SIRTs are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that play a role in gene regulation, metabolism, aging, and cancer. SIRTs regulate the energy balance, the lipid balance, glucose metabolism, and adipogenesis, but current evidence also indicates a role for SIRTs in male reproduction. However, the majority of the studies have been conducted in animal models and very few have been conducted with humans. This review shows that SIRTs play an important role among the molecular mechanisms by which obesity interferes with male fertility. This highlights the need to deepen this relationship. It will be of particular interest to evaluate whether synthetic and/or natural compounds capable of modifying the activity of SIRTs may also be useful for the treatment of obesity and its effects on gonadal function. Although few studies have explored the role of SIRT activators in obesity-induced male infertility, some molecules, such as resveratrol, appear to be effective in modulating SIRT activity, as well as counteracting the negative effects of obesity on male fertility. The search for strategies to improve male reproductive function in overweight/obese patients is a challenge and understanding the role of SIRTs and their activators may open new interesting scenarios in the coming years.


2022 ◽  
Vol 23 (2) ◽  
pp. 954
Author(s):  
Ipek Akol ◽  
Fabian Gather ◽  
Tanja Vogel

Development of the central nervous system (CNS) depends on accurate spatiotemporal control of signaling pathways and transcriptional programs. Forkhead Box G1 (FOXG1) is one of the master regulators that play fundamental roles in forebrain development; from the timing of neurogenesis, to the patterning of the cerebral cortex. Mutations in the FOXG1 gene cause a rare neurodevelopmental disorder called FOXG1 syndrome, also known as congenital form of Rett syndrome. Patients presenting with FOXG1 syndrome manifest a spectrum of phenotypes, ranging from severe cognitive dysfunction and microcephaly to social withdrawal and communication deficits, with varying severities. To develop and improve therapeutic interventions, there has been considerable progress towards unravelling the multi-faceted functions of FOXG1 in the neurodevelopment and pathogenesis of FOXG1 syndrome. Moreover, recent advances in genome editing and stem cell technologies, as well as the increased yield of information from high throughput omics, have opened promising and important new avenues in FOXG1 research. In this review, we provide a summary of the clinical features and emerging molecular mechanisms underlying FOXG1 syndrome, and explore disease-modelling approaches in animals and human-based systems, to highlight the prospects of research and possible clinical interventions.


Sign in / Sign up

Export Citation Format

Share Document