scholarly journals Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

2018 ◽  
Vol 8 ◽  
pp. 93-98 ◽  
Author(s):  
Shadab Dabagh ◽  
Kashif Chaudhary ◽  
Zuhaib Haider ◽  
Jalil Ali
2011 ◽  
Vol 295-297 ◽  
pp. 890-895
Author(s):  
Yan Dong ◽  
Yang Zhou ◽  
Xue Lin Han ◽  
Wei Jie Gu

Mg doped BaAl12O19:Mn2+ phosphor is one of the most efficient green phosphors for PDP. It is difficult to prepare the phosphor both have small particle size (< 3μm) and high luminescence. In the present work, a BaAl12O19:Mn2+ phosphor with small particle size was synthesized by the chemical co-precipitation method. Phase transformation and particle growth process during calcining process were investigated. The nucleation process was also discussed. The results show that, the phase transformation is complicated, the transition phases include BaCO3, γ-Al2O3, BaF2, BaAl2O4 and two phases contain Mn; The BaAl12O19 phase is formed from the reaction between BaAl2O4 phase and γ-Al2O3 phase, no a-Al2O3 phase appears during the entire process; The formation temperature of pure BaAl12O19 phase is 1200°C, which is lower than that in the high-temperature solid state reaction method. High efficiency BaAl12O19:Mn2+ phosphor with small particle size (< 2μm) and hexagonal flaky shape can be prepared by this method.


Sign in / Sign up

Export Citation Format

Share Document