Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties

2006 ◽  
Vol 26 (6-7) ◽  
pp. 574-581 ◽  
Author(s):  
Liao-Liang Ke ◽  
Yue-Sheng Wang ◽  
Zi-Mao Zhang
Wave Motion ◽  
1998 ◽  
Vol 28 (2) ◽  
pp. 191-193 ◽  
Author(s):  
Sarva Jit Singh

2020 ◽  
Vol 13 (13) ◽  
Author(s):  
Bishwanath Prasad ◽  
Santimoy Kundu ◽  
Prakash Chandra Pal ◽  
Parvez Alam
Keyword(s):  

2015 ◽  
Vol 40 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Piotr Kiełczyński ◽  
Marek Szalewski ◽  
Andrzej Balcerzak ◽  
Krzysztof Wieja

AbstractThis paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method.The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.


Sign in / Sign up

Export Citation Format

Share Document