liouville problem
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 81)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 62 ◽  
pp. 1-8
Author(s):  
Jonas Vitkauskas ◽  
Artūras Štikonas

In this paper, relations between discrete Sturm--Liouville problem with nonlocal integral boundary condition characteristics (poles, critical points, spectrum curves) and graphs characteristics (vertices, edges and faces) were found. The previous article was devoted to the Sturm--Liouville problem in the case two-points nonlocal boundary conditions.







Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Malgorzata Klimek

In this study, we consider regular eigenvalue problems formulated by using the left and right standard fractional derivatives and extend the notion of a fractional Sturm–Liouville problem to the regular Prabhakar eigenvalue problem, which includes the left and right Prabhakar derivatives. In both cases, we study the spectral properties of Sturm–Liouville operators on function space restricted by homogeneous Dirichlet boundary conditions. Fractional and fractional Prabhakar Sturm–Liouville problems are converted into the equivalent integral ones. Afterwards, the integral Sturm–Liouville operators are rewritten as Hilbert–Schmidt operators determined by kernels, which are continuous under the corresponding assumptions. In particular, the range of fractional order is here restricted to interval (1/2,1]. Applying the spectral Hilbert–Schmidt theorem, we prove that the spectrum of integral Sturm–Liouville operators is discrete and the system of eigenfunctions forms a basis in the corresponding Hilbert space. Then, equivalence results for integral and differential versions of respective eigenvalue problems lead to the main theorems on the discrete spectrum of differential fractional and fractional Prabhakar Sturm–Liouville operators.



2021 ◽  
Author(s):  
Alireza Afarideh ◽  
Farhad Dastmalchi Saei ◽  
Mehrdad Lakestani ◽  
Behzad Nemati Saray

Abstract This work deals with the pseudospectral method to solve the Sturm–Liouville eigenvalue problems with Caputo fractional derivative using Chebyshev cardinal functions. The method is based on reducing the problem to a weakly singular Volterra integro-differential equation. Then, using the matrices obtained from the representation of the fractional integration operator and derivative operator based on Chebyshev cardinal functions, the equation becomes an algebraic system. To get the eigenvalues, we find the roots of the characteristics polynomial of the coefficients matrix. We have proved the convergence of the proposed method. To illustrate the ability and accuracy of the method, some numerical examples are presented.



2021 ◽  
pp. 443-492
Author(s):  
Dean G. Duffy


Sign in / Sign up

Export Citation Format

Share Document