scholarly journals On finite capacity queues with time dependent arrival rates

2013 ◽  
Vol 123 (6) ◽  
pp. 2175-2227 ◽  
Author(s):  
Xiaoqian Tan ◽  
Charles Knessl ◽  
Yongzhi (Peter) Yang
2004 ◽  
Vol 41 (4) ◽  
pp. 1145-1156 ◽  
Author(s):  
Parijat Dube ◽  
Fabrice Guillemin ◽  
Ravi R. Mazumdar

In this paper we use the exit time theory for Lévy processes to derive new closed-form results for the busy period distribution of finite-capacity fluid M/G/1 queues. Based on this result, we then obtain the busy period distribution for finite-capacity queues with on–off inputs when the off times are exponentially distributed.


2004 ◽  
Vol 41 (04) ◽  
pp. 1145-1156 ◽  
Author(s):  
Parijat Dube ◽  
Fabrice Guillemin ◽  
Ravi R. Mazumdar

In this paper we use the exit time theory for Lévy processes to derive new closed-form results for the busy period distribution of finite-capacity fluid M/G/1 queues. Based on this result, we then obtain the busy period distribution for finite-capacity queues with on–off inputs when the off times are exponentially distributed.


1991 ◽  
Vol 23 (2) ◽  
pp. 373-387 ◽  
Author(s):  
Hideaki Takagi

We consider a system of N finite-capacity queues attended by a single server in cyclic order. For each visit by the server to a queue, the service is given continuously until that queue becomes empty (exhaustive service), given continuously only to those customers present at the visiting instant (gated service), or given to only a single customer (limited service). The server then switches to the next queue with a random switchover time, and administers the same type of service there similarly. For such a system where each queue has a Poisson arrival process, general service time distribution, and finite capacity, we find the distribution of the waiting time at each queue by utilizing the known results for a single M/G/1/K queue with multiple vacations.


1983 ◽  
Vol 20 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Samuel W. Woolford

This paper considers a finite-capacity storage model defined on a Markov chain {Xn; n = 0, 1, ·· ·}, having state space J ⊆ {1, 2, ·· ·}. If Xn = j, then there is a random ‘input' Vn(j) (a negative input implying a demand) of ‘type' j, having a distribution function Fj(·). We assume that {Vn(j)} is an i.i.d. sequence of random variables, taken to be independent of {Xn} and of {Vn (k)}, for k ≠ j. Here, the random variables Vn(j) represent instantaneous ‘inputs' of type j for our storage model. Within this framework, we establish certain limit distributions for the joint processes (Zn, Xn) and (Zn, Qn, Ln), where Zn (defined in (1.2)) is the level of storage at time n, Qn (defined in (1.3)) is the cumulative overflow at time n, and Ln (defined in (1.4)) is the cumulative demand lost due to shortage of supply up to time n. In addition, an expression for the time-dependent distribution of (Zn, Xn) is obtained.


1991 ◽  
Vol 23 (02) ◽  
pp. 373-387 ◽  
Author(s):  
Hideaki Takagi

We consider a system of N finite-capacity queues attended by a single server in cyclic order. For each visit by the server to a queue, the service is given continuously until that queue becomes empty (exhaustive service), given continuously only to those customers present at the visiting instant (gated service), or given to only a single customer (limited service). The server then switches to the next queue with a random switchover time, and administers the same type of service there similarly. For such a system where each queue has a Poisson arrival process, general service time distribution, and finite capacity, we find the distribution of the waiting time at each queue by utilizing the known results for a single M/G/1/K queue with multiple vacations.


2020 ◽  
Vol 21 (3) ◽  
pp. 1011-1022
Author(s):  
Chase P. Dowling ◽  
Lillian J. Ratliff ◽  
Baosen Zhang

Sign in / Sign up

Export Citation Format

Share Document