monotonicity results
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Robert E. Gaunt

AbstractWe establish some monotonicity results and functional inequalities for modified Lommel functions of the first kind. In particular, we obtain new Turán type inequalities and bounds for ratios of modified Lommel functions of the first kind, as well as the function itself. These results complement and in some cases improve on existing results, and also generalise a number of the results from the literature on monotonicity patterns and functional inequalities for the modified Struve function of the first kind.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hanaa M. Zayed

AbstractAn approach to the generalized Bessel–Maitland function is proposed in the present paper. It is denoted by $\mathcal{J}_{\nu , \lambda }^{\mu }$ J ν , λ μ , where $\mu >0$ μ > 0 and $\lambda ,\nu \in \mathbb{C\ }$ λ , ν ∈ C get increasing interest from both theoretical mathematicians and applied scientists. The main objective is to establish the integral representation of $\mathcal{J}_{\nu ,\lambda }^{\mu }$ J ν , λ μ by applying Gauss’s multiplication theorem and the representation for the beta function as well as Mellin–Barnes representation using the residue theorem. Moreover, the mth derivative of $\mathcal{J}_{\nu ,\lambda }^{\mu }$ J ν , λ μ is considered, and it turns out that it is expressed as the Fox–Wright function. In addition, the recurrence formulae and other identities involving the derivatives are derived. Finally, the monotonicity of the ratio between two modified Bessel–Maitland functions $\mathcal{I}_{\nu ,\lambda }^{\mu }$ I ν , λ μ defined by $\mathcal{I}_{\nu ,\lambda }^{\mu }(z)=i^{-2\lambda -\nu }\mathcal{J}_{ \nu ,\lambda }^{\mu }(iz)$ I ν , λ μ ( z ) = i − 2 λ − ν J ν , λ μ ( i z ) of a different order, the ratio between modified Bessel–Maitland and hyperbolic functions, and some monotonicity results for $\mathcal{I}_{\nu ,\lambda }^{\mu }(z)$ I ν , λ μ ( z ) are obtained where the main idea of the proofs comes from the monotonicity of the quotient of two Maclaurin series. As an application, some inequalities (like Turán-type inequalities and their reverse) are proved. Further investigations on this function are underway and will be reported in a forthcoming paper.


2021 ◽  
Vol 5 (3) ◽  
pp. 116
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

The discrete delta Caputo-Fabrizio fractional differences and sums are proposed to distinguish their monotonicity analysis from the sense of Riemann and Caputo operators on the time scale Z. Moreover, the action of Q− operator and discrete delta Laplace transform method are also reported. Furthermore, a relationship between the discrete delta Caputo-Fabrizio-Caputo and Caputo-Fabrizio-Riemann fractional differences is also studied in detail. To better understand the dynamic behavior of the obtained monotonicity results, the fractional difference mean value theorem is derived. The idea used in this article is readily applicable to obtain monotonicity analysis of other discrete fractional operators in discrete fractional calculus.


Author(s):  
Abhishek ◽  
Benjamin Legros ◽  
Jan C. Fransoo

As freight deliveries in cities increase due to retail fragmentation and e-commerce, parking is becoming a more and more relevant part of transportation. In fact, many freight vehicles in cities spend more time parked than they are moving. Moreover, part of the public parking space is shared with passenger vehicles, especially cars. Both arrival processes and parking and delivery processes are stochastic in nature. In order to develop a framework for analysis, we propose a queueing model for an urban parking system consisting of delivery bays and general on-street parking spaces. Freight vehicles may park both in the dedicated bays and in general on-street parking, whereas passenger vehicles only make use of general on-street parking. Our model allows us to create parsimonious insights into the behavior of a delivery bay parking stretch as part of a limited length of curbside. We are able to find explicit expressions for the relevant performance measures, and formally prove a number of monotonicity results. We further conduct a series of numerical experiments to show more intricate properties that cannot be shown analytically. The model helps us shed light onto the effects of allocating scarce urban curb space to dedicated unloading bays at the expense of general on-street parking. In particular, we show that allocating more space to dedicated delivery bays can also make passenger cars better off.


Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christopher S. Goodrich ◽  
Jagan M. Jonnalagadda

Abstract We consider the sequential CFC-type nabla fractional difference ( CFC ∇ a + 1 ν ∇ a μ CFC u ) ( t ) {(^{\mathrm{CFC}}\nabla^{\nu}_{a+1}{}^{\mathrm{CFC}}\nabla^{\mu}_{a}u)(t)} and show that one can derive monotonicity-type results even in the case where this difference satisfies a strictly negative lower bound. This illustrates some dissimilarities between the integer-order and fractional-order cases.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1303
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

Monotonicity analysis of delta fractional sums and differences of order υ∈(0,1] on the time scale hZ are presented in this study. For this analysis, two models of discrete fractional calculus, Riemann–Liouville and Caputo, are considered. There is a relationship between the delta Riemann–Liouville fractional h-difference and delta Caputo fractional h-differences, which we find in this study. Therefore, after we solve one, we can apply the same method to the other one due to their correlation. We show that y(z) is υ-increasing on Ma+υh,h, where the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and then, we can show that y(z) is υ-increasing on Ma+υh,h, where the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) for each z∈Ma+h,h. Conversely, if y(a+υh) is greater or equal to zero and y(z) is increasing on Ma+υh,h, we show that the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and consequently, we can show that the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) on Ma,h. Furthermore, we consider some related results for strictly increasing, decreasing, and strictly decreasing cases. Finally, the fractional forward difference initial value problems and their solutions are investigated to test the mean value theorem on the time scale hZ utilizing the monotonicity results.


Author(s):  
Francesco Esposito ◽  
Susana Merchán ◽  
Luigi Montoro

AbstractIn this paper we obtain symmetry and monotonicity results for positive solutions to some p-Laplacian cooperative systems in bounded domains involving first-order terms and under zero Dirichlet boundary condition.


2021 ◽  
Vol 127 (1) ◽  
pp. 111-130
Author(s):  
Dimitris Askitis

The beta distribution is a two-parameter family of probability distributions whose distribution function is the (regularised) incomplete beta function. In this paper, the inverse incomplete beta function is studied analytically as a univariate function of the first parameter. Monotonicity, limit results and convexity properties are provided. In particular, logarithmic concavity of the inverse incomplete beta function is established. In addition, we provide monotonicity results on inverses of a larger class of parametrised distributions that may be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document