scholarly journals On a maximal inequality and its application to SDEs with singular drift

2020 ◽  
Vol 130 (7) ◽  
pp. 4275-4293
Author(s):  
Xuan Liu ◽  
Guangyu Xi
1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2018 ◽  
Vol 46 (3) ◽  
pp. 1455-1497 ◽  
Author(s):  
Carlo Marinelli ◽  
Luca Scarpa

2009 ◽  
Vol 50 ◽  
Author(s):  
Dainius Dzindzalieta

We consider random walks, say Wn = {0, M1, . . ., Mn} of length n starting at 0 and based on a martingale sequence Mk = X1 + ··· + Xk with differences Xm. Assuming |Xk| \leq 1 we solve the isoperimetric problem Bn(x) = supP\{Wn visits an interval [x,∞)\},  (1) where sup is taken over all possible Wn. We describe random walks which maximize the probability in (1). We also extend the results to super-martingales.For martingales our results can be interpreted as a maximalinequalitiesP\{max 1\leq k\leq n Mk   \geq x\} \leq Bn(x).The maximal inequality is optimal since the equality is achieved by martingales related to the maximizing random walks. To prove the result we introduce a general principle – maximal inequalities for (natural classes of) martingales are equivalent to (seemingly weaker) inequalities for tail probabilities, in our caseBn(x) = supP{Mn  \geq  x}.Our methods are similar in spirit to a method used in [1], where a solution of an isoperimetric problem (1), for integer x is provided and to the method used in [4], where the isoperimetric problem of type (1) for conditionally symmetric bounded martingales was solved for all x ∈ R.


2017 ◽  
Author(s):  
Keitaro Nagata ◽  
Hideo Matsufuru ◽  
Jun Nishimura ◽  
Shinji Shimasaki

1998 ◽  
Vol 35 (04) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτ E (max0≤t≤τ X t − c τ), where X = (X t ) t≥0 is geometric Brownian motion with drift μ and volatility σ > 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ < 0. The optimal stopping time is given by τ* = inf {t > 0 | X t = g * (max0≤t≤s X s )} where s ↦ g *(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 < g(s) < s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g *(s) ∼ ((Δ − 1) / K Δ)1 / Δ s 1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (sup t>0 X t ) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


2021 ◽  
Vol 58 (2) ◽  
pp. 216-229
Author(s):  
Yanbo Ren ◽  
Congbian Ma

Let ɣ and Φ1 be nondecreasing and nonnegative functions defined on [0, ∞), and Φ2 is an N -function, u, v and w are weights. A unified version of weighted weak type inequality of the formfor martingale maximal operators f ∗ is considered, some necessary and su@cient conditions for it to hold are shown. In addition, we give a complete characterization of three-weight weak type maximal inequality of martingales. Our results generalize some known results on weighted theory of martingale maximal operators.


Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

The aim of this chapter is to present useful tools for analyzing the asymptotic behavior of partial sums associated with dependent sequences, by approximating them with martingales. We start by collecting maximal and moment inequalities for martingales such as the Doob maximal inequality, the Burkholder inequality, and the Rosenthal inequality. Exponential inequalities for martingales are also provided. We then present several sufficient conditions for the central limit behavior and its functional form for triangular arrays of martingales. The last part of the chapter is devoted to the moderate deviations principle and its functional form for triangular arrays of martingale difference sequences.


Sign in / Sign up

Export Citation Format

Share Document