moderate deviations principle
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

The aim of this chapter is to present useful tools for analyzing the asymptotic behavior of partial sums associated with dependent sequences, by approximating them with martingales. We start by collecting maximal and moment inequalities for martingales such as the Doob maximal inequality, the Burkholder inequality, and the Rosenthal inequality. Exponential inequalities for martingales are also provided. We then present several sufficient conditions for the central limit behavior and its functional form for triangular arrays of martingales. The last part of the chapter is devoted to the moderate deviations principle and its functional form for triangular arrays of martingale difference sequences.


Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

We start by stating the need for a Gaussian approximation for dependent structures in the form of the central limit theorem (CLT) or of the functional CLT. To justify the need to quantify the dependence, we introduce illustrative examples: linear processes, functions of stationary sequences, recursive sequences, dynamical systems, additive functionals of Markov chains, and self-interactions. The limiting behavior of the associated partial sums can be handled with tools developed throughout the book. We also present basic notions for stationary sequences of random variables: various definitions and constructions, and definitions of ergodicity, projective decomposition, and spectral density. Special attention is given to dynamical systems, as many of our results also apply in this context. The chapter also surveys the basic theory of the convergence of stochastic processes in distribution, and introduces the reader to tightness, finite-dimensional convergence, and the need for maximal inequalities. It ends with the concepts of the moderate deviations principle and its functional form.


Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

Gordin’s seminal paper (1969) initiated a line of research in which limit theorems for stationary sequences are proved via appropriate approximations by stationary martingale difference sequences followed by an application of the corresponding limit theorem for such sequences. In this chapter, we first review different ways to get suitable martingale approximations and then derive the central limit theorem and its functional form for strictly stationary sequences under various types of projective criteria. More general normalizations than the traditional ones will be also investigated, as well as the functional moderate deviation principle. We shall also address the question of the functional form of the central limit theorem for not necessarily stationary sequences. The last part of this chapter is dedicated to the moderate deviations principle and its functional form for stationary sequences of bounded random variables satisfying projective-type conditions.


1999 ◽  
Vol 31 (1) ◽  
pp. 254-278 ◽  
Author(s):  
Cheng-Shang Chang ◽  
David D. Yao ◽  
Tim Zajic

Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y, as a fractional integral of Riemann-Liouville type applied to a more standard process X—one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X, we then establish the MDP for Y. Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y. In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.


1999 ◽  
Vol 31 (01) ◽  
pp. 254-278 ◽  
Author(s):  
Cheng-Shang Chang ◽  
David D. Yao ◽  
Tim Zajic

Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y, as a fractional integral of Riemann-Liouville type applied to a more standard process X—one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X, we then establish the MDP for Y. Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y. In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.


Sign in / Sign up

Export Citation Format

Share Document