Perceptual speech enhancement exploiting temporal masking properties of human auditory system

2010 ◽  
Vol 52 (5) ◽  
pp. 381-393 ◽  
Author(s):  
Teddy Surya Gunawan ◽  
Eliathamby Ambikairajah ◽  
Julien Epps
2013 ◽  
Vol 760-762 ◽  
pp. 536-541 ◽  
Author(s):  
Yu Hong Liu ◽  
Dong Mei Zhou ◽  
Zhan Jun Jiang

The paper addresses the problems of speech distortion and residual musical noise introduced by conventional spectral subtraction (SS) method for speech enhancement. In this paper, we propose a modified SS algorithm for speech enhancement based on the masking properties of human auditory system. The algorithm computes the parameters α and β dynamically according to the masking thresholds of the critical frequency segments for each speech frame. Simulation results show that the proposed algorithm is superior to the conventional SS method, not only in the improvement of output SNR, but in the reduction of the speech distortion and residual musical noise.


2021 ◽  
pp. 1-12
Author(s):  
Jie Wang ◽  
Linhuang Yan ◽  
Qiaohe Yang ◽  
Minmin Yuan

In this paper, a single-channel speech enhancement algorithm is proposed by using guided spectrogram filtering based on masking properties of human auditory system when considering a speech spectrogram as an image. Guided filtering is capable of sharpening details and estimating unwanted textures or background noise from the noisy speech spectrogram. If we consider the noisy spectrogram as a degraded image, we can estimate the spectrogram of the clean speech signal using guided filtering after subtracting noise components. Combined with masking properties of human auditory system, the proposed algorithm adaptively adjusts and reduces the residual noise of the enhanced speech spectrogram according to the corresponding masking threshold. Because the filtering output is a local linear transform of the guidance spectrogram, the local mask window slides can be efficiently implemented via box filter with O(N) computational complexity. Experimental results show that the proposed algorithm can effectively suppress noise in different noisy environments and thus can greatly improve speech quality and speech intelligibility.


1978 ◽  
Vol 12 (2) ◽  
pp. 77-79
Author(s):  
I. V. Marchuk ◽  
A. N. Tsisarenko ◽  
�. A. Bakai

Sign in / Sign up

Export Citation Format

Share Document