Speech enhancement based on perceptually motivated guided spectrogram filtering

2021 ◽  
pp. 1-12
Author(s):  
Jie Wang ◽  
Linhuang Yan ◽  
Qiaohe Yang ◽  
Minmin Yuan

In this paper, a single-channel speech enhancement algorithm is proposed by using guided spectrogram filtering based on masking properties of human auditory system when considering a speech spectrogram as an image. Guided filtering is capable of sharpening details and estimating unwanted textures or background noise from the noisy speech spectrogram. If we consider the noisy spectrogram as a degraded image, we can estimate the spectrogram of the clean speech signal using guided filtering after subtracting noise components. Combined with masking properties of human auditory system, the proposed algorithm adaptively adjusts and reduces the residual noise of the enhanced speech spectrogram according to the corresponding masking threshold. Because the filtering output is a local linear transform of the guidance spectrogram, the local mask window slides can be efficiently implemented via box filter with O(N) computational complexity. Experimental results show that the proposed algorithm can effectively suppress noise in different noisy environments and thus can greatly improve speech quality and speech intelligibility.

Author(s):  
Siriporn Dachasilaruk ◽  
Niphat Jantharamin ◽  
Apichai Rungruang

Cochlear implant (CI) listeners encounter difficulties in communicating with other persons in noisy listening environments. However, most CI research has been carried out using the English language. In this study, single-channel speech enhancement (SE) strategies as a pre-processing approach for the CI system were investigated in terms of Thai speech intelligibility improvement. Two SE algorithms, namely multi-band spectral subtraction (MBSS) and Weiner filter (WF) algorithms, were evaluated. Speech signals consisting of monosyllabic and bisyllabic Thai words were degraded by speech-shaped noise and babble noise at SNR levels of 0, 5, and 10 dB. Then the noisy words were enhanced using SE algorithms. The enhanced words were fed into the CI system to synthesize vocoded speech. The vocoded speech was presented to twenty normal-hearing listeners. The results indicated that speech intelligibility was marginally improved by the MBSS algorithm and significantly improved by the WF algorithm in some conditions. The enhanced bisyllabic words showed a noticeably higher intelligibility improvement than the enhanced monosyllabic words in all conditions, particularly in speech-shaped noise. Such outcomes may be beneficial to Thai-speaking CI listeners.


2013 ◽  
Vol 760-762 ◽  
pp. 536-541 ◽  
Author(s):  
Yu Hong Liu ◽  
Dong Mei Zhou ◽  
Zhan Jun Jiang

The paper addresses the problems of speech distortion and residual musical noise introduced by conventional spectral subtraction (SS) method for speech enhancement. In this paper, we propose a modified SS algorithm for speech enhancement based on the masking properties of human auditory system. The algorithm computes the parameters α and β dynamically according to the masking thresholds of the critical frequency segments for each speech frame. Simulation results show that the proposed algorithm is superior to the conventional SS method, not only in the improvement of output SNR, but in the reduction of the speech distortion and residual musical noise.


2010 ◽  
Vol 8 ◽  
pp. 95-99
Author(s):  
F. X. Nsabimana ◽  
V. Subbaraman ◽  
U. Zölzer

Abstract. To enhance extreme corrupted speech signals, an Improved Psychoacoustically Motivated Spectral Weighting Rule (IPMSWR) is proposed, that controls the predefined residual noise level by a time-frequency dependent parameter. Unlike conventional Psychoacoustically Motivated Spectral Weighting Rules (PMSWR), the level of the residual noise is here varied throughout the enhanced speech based on the discrimination between the regions with speech presence and speech absence by means of segmental SNR within critical bands. Controlling in such a way the level of the residual noise in the noise only region avoids the unpleasant residual noise perceived at very low SNRs. To derive the gain coefficients, the computation of the masking curve and the estimation of the corrupting noise power are required. Since the clean speech is generally not available for a single channel speech enhancement technique, the rough clean speech components needed to compute the masking curve are here obtained using advanced spectral subtraction techniques. To estimate the corrupting noise, a new technique is employed, that relies on the noise power estimation using rapid adaptation and recursive smoothing principles. The performances of the proposed approach are objectively and subjectively compared to the conventional approaches to highlight the aforementioned improvement.


2010 ◽  
Vol 52 (5) ◽  
pp. 381-393 ◽  
Author(s):  
Teddy Surya Gunawan ◽  
Eliathamby Ambikairajah ◽  
Julien Epps

Sign in / Sign up

Export Citation Format

Share Document