scholarly journals Type checking a multithreaded functional language with session types

2006 ◽  
Vol 368 (1-2) ◽  
pp. 64-87 ◽  
Author(s):  
Vasco T. Vasconcelos ◽  
Simon J. Gay ◽  
António Ravara
2000 ◽  
Vol 10 (1) ◽  
pp. 57-75 ◽  
Author(s):  
YANG JUNG ◽  
GREG MICHAELSON

The understanding of polymorphic typechecking and type errors is poorly supported by contemporary functional language implementations. Here, a novel visualisation of functions and their types is presented based on the generation of function specific icons with graphical type representations which change dynamically as functions are applied. This visualisation has been implemented for a Standard ML subset within a graphical environment in which function combinations are constrained by type matching.


2021 ◽  
Vol 5 (ICFP) ◽  
pp. 1-28
Author(s):  
Adam Chlipala

Rigorous reasoning about programs calls for some amount of bureaucracy in managing details like variable binding, but, in guiding students through big ideas in semantics, we might hope to minimize the overhead. We describe our experiment introducing a range of such ideas, using the Coq proof assistant, without any explicit representation of variables, instead using a higher-order syntax encoding that we dub "mixed embedding": it is neither the fully explicit syntax of deep embeddings nor the syntax-free programming of shallow embeddings. Marquee examples include different takes on concurrency reasoning, including in the traditions of model checking (partial-order reduction), program logics (concurrent separation logic), and type checking (session types) -- all presented without any side conditions on variables.


Author(s):  
LUCA PADOVANI

AbstractInspired by the continuation-passing encoding of binary sessions, we describe a simple approach to embed a hybrid form of session type checking into any programming language that supports parametric polymorphism. The approach combines static protocol analysis with dynamic linearity checks. To demonstrate the effectiveness of the technique, we implement a well-integrated OCaml module for session communications. For free, OCaml provides us with equirecursive session types, parametric behavioural polymorphism, complete session type inference, and session subtyping.


2014 ◽  
Vol 24 (2-3) ◽  
pp. 384-418 ◽  
Author(s):  
PHILIP WADLER

AbstractContinuing a line of work by Abramsky (1994), Bellin and Scott (1994), and Caires and Pfenning (2010), among others, this paper presents CP, a calculus, in which propositions of classical linear logic correspond to session types. Continuing a line of work by Honda (1993), Hondaet al. (1998), and Gay & Vasconcelos (2010), among others, this paper presents GV, a linear functional language with session types, and a translation from GV into CP. The translation formalises for the first time a connection between a standard presentation of session types and linear logic, and shows how a modification to the standard presentation yields a language free from races and deadlock, where race and deadlock freedom follows from the correspondence to linear logic.


2019 ◽  
Vol 291 ◽  
pp. 12-23
Author(s):  
Bernardo Almeida ◽  
Andreia Mordido ◽  
Vasco T. Vasconcelos

Author(s):  
Vasco T. Vasconcelos ◽  
Filipe Casal ◽  
Bernardo Almeida ◽  
Andreia Mordido

AbstractSession types describe patterns of interaction on communicating channels. Traditional session types include a form of choice whereby servers offer a collection of options, of which each client picks exactly one. This sort of choice constitutes a particular case of separated choice: offering on one side, selecting on the other. We introduce mixed choices in the context of session types and argue that they increase the flexibility of program development at the same time that they reduce the number of synchronisation primitives to exactly one. We present a type system incorporating subtyping and prove preservation and absence of runtime errors for well-typed processes. We further show that classical (conventional) sessions can be faithfully and tightly embedded in mixed choices. Finally, we discuss algorithmic type checking and a runtime system built on top of a conventional (choice-less) message-passing architecture.


2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-29
Author(s):  
Paul He ◽  
Eddy Westbrook ◽  
Brent Carmer ◽  
Chris Phifer ◽  
Valentin Robert ◽  
...  

Verifying imperative programs is hard. A key difficulty is that the specification of what an imperative program does is often intertwined with details about pointers and imperative state. Although there are a number of powerful separation logics that allow the details of imperative state to be captured and managed, these details are complicated and reasoning about them requires significant time and expertise. In this paper, we take a different approach: a memory-safe type system that, as part of type-checking, extracts functional specifications from imperative programs. This disentangles imperative state, which is handled by the type system, from functional specifications, which can be verified without reference to pointers. A key difficulty is that sometimes memory safety depends crucially on the functional specification of a program; e.g., an array index is only memory-safe if the index is in bounds. To handle this case, our specification extraction inserts dynamic checks into the specification. Verification then requires the additional proof that none of these checks fail. However, these checks are in a purely functional language, and so this proof also requires no reasoning about pointers.


2022 ◽  
Vol Volume 18, Issue 1 ◽  
Author(s):  
Ankush Das ◽  
Frank Pfenning

Traditional session types prescribe bidirectional communication protocols for concurrent computations, where well-typed programs are guaranteed to adhere to the protocols. However, simple session types cannot capture properties beyond the basic type of the exchanged messages. In response, recent work has extended session types with refinements from linear arithmetic, capturing intrinsic attributes of processes and data. These refinements then play a central role in describing sequential and parallel complexity bounds on session-typed programs. The Rast language provides an open-source implementation of session-typed concurrent programs extended with arithmetic refinements as well as ergometric and temporal types to capture work and span of program execution. To further support generic programming, Rast also enhances arithmetically refined session types with recently developed nested parametric polymorphism. Type checking relies on Cooper's algorithm for quantifier elimination in Presburger arithmetic with a few significant optimizations, and a heuristic extension to nonlinear constraints. Rast furthermore includes a reconstruction engine so that most program constructs pertaining the layers of refinements and resources are inserted automatically. We provide a variety of examples to demonstrate the expressivity of the language.


Sign in / Sign up

Export Citation Format

Share Document