concurrent separation logic
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 43 (4) ◽  
pp. 1-134
Author(s):  
Emanuele D’Osualdo ◽  
Julian Sutherland ◽  
Azadeh Farzan ◽  
Philippa Gardner

We present TaDA Live, a concurrent separation logic for reasoning compositionally about the termination of blocking fine-grained concurrent programs. The crucial challenge is how to deal with abstract atomic blocking : that is, abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found in, for example, fine-grained spin locks. Our fundamental innovation is with the design of abstract specifications that capture this blocking behaviour as liveness assumptions on the environment. We design a logic that can reason about the termination of clients that use such operations without breaking their abstraction boundaries, and the correctness of the implementations of the operations with respect to their abstract specifications. We introduce a novel semantic model using layered subjective obligations to express liveness invariants and a proof system that is sound with respect to the model. The subtlety of our specifications and reasoning is illustrated using several case studies.


2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-32
Author(s):  
Nisarg Patel ◽  
Siddharth Krishna ◽  
Dennis Shasha ◽  
Thomas Wies

Multicopy search structures such as log-structured merge (LSM) trees are optimized for high insert/update/delete (collectively known as upsert) performance. In such data structures, an upsert on key k , which adds ( k , v ) where v can be a value or a tombstone, is added to the root node even if k is already present in other nodes. Thus there may be multiple copies of k in the search structure. A search on k aims to return the value associated with the most recent upsert. We present a general framework for verifying linearizability of concurrent multicopy search structures that abstracts from the underlying representation of the data structure in memory, enabling proof-reuse across diverse implementations. Based on our framework, we propose template algorithms for (a) LSM structures forming arbitrary directed acyclic graphs and (b) differential file structures, and formally verify these templates in the concurrent separation logic Iris. We also instantiate the LSM template to obtain the first verified concurrent in-memory LSM tree implementation.


2021 ◽  
Vol 5 (ICFP) ◽  
pp. 1-28
Author(s):  
Adam Chlipala

Rigorous reasoning about programs calls for some amount of bureaucracy in managing details like variable binding, but, in guiding students through big ideas in semantics, we might hope to minimize the overhead. We describe our experiment introducing a range of such ideas, using the Coq proof assistant, without any explicit representation of variables, instead using a higher-order syntax encoding that we dub "mixed embedding": it is neither the fully explicit syntax of deep embeddings nor the syntax-free programming of shallow embeddings. Marquee examples include different takes on concurrency reasoning, including in the traditions of model checking (partial-order reduction), program logics (concurrent separation logic), and type checking (session types) -- all presented without any side conditions on variables.


2021 ◽  
Vol 5 (ICFP) ◽  
pp. 1-30
Author(s):  
Aymeric Fromherz ◽  
Aseem Rastogi ◽  
Nikhil Swamy ◽  
Sydney Gibson ◽  
Guido Martínez ◽  
...  

Steel is a language for developing and proving concurrent programs embedded in F ⋆ , a dependently typed programming language and proof assistant. Based on SteelCore, a concurrent separation logic (CSL) formalized in F ⋆ , our work focuses on exposing the proof rules of the logic in a form that enables programs and proofs to be effectively co-developed. Our main contributions include a new formulation of a Hoare logic of quintuples involving both separation logic and first-order logic, enabling efficient verification condition (VC) generation and proof discharge using a combination of tactics and SMT solving. We relate the VCs produced by our quintuple system to solving a system of associativity-commutativity (AC) unification constraints and develop tactics to (partially) solve these constraints using AC-matching modulo SMT-dischargeable equations. Our system is fully mechanized and implemented in F ⋆ . We evaluate it by developing several verified programs and libraries, including various sequential and concurrent linked data structures, proof libraries, and a library for 2-party session types. Our experience leads us to conclude that our system enables a mixture of automated and interactive proof, making it productive to build programs foundationally verified against a highly expressive, state-of-the-art CSL.


2021 ◽  
Vol 5 (ICFP) ◽  
pp. 1-29
Author(s):  
Glen Mével ◽  
Jacques-Henri Jourdan

We use Cosmo, a modern concurrent separation logic, to formally specify and verify an implementation of a multiple-producer multiple-consumer concurrent queue in the setting of the Multicore OCaml weak memory model. We view this result as a demonstration and experimental verification of the manner in which Cosmo allows modular and formal reasoning about advanced concurrent data structures. In particular, we show how the joint use of logically atomic triples and of Cosmo's views makes it possible to describe precisely in the specification the interaction between the queue library and the weak memory model.


2021 ◽  
Vol 5 (ICFP) ◽  
pp. 1-29
Author(s):  
Lars Birkedal ◽  
Thomas Dinsdale-Young ◽  
Armaël Guéneau ◽  
Guilhem Jaber ◽  
Kasper Svendsen ◽  
...  

Separation logic specifications with abstract predicates intuitively enforce a discipline that constrains when and how calls may be made between a client and a library. Thus a separation logic specification of a library intuitively enforces a protocol on the trace of interactions between a client and the library. We show how to formalize this intuition and demonstrate how to derive "free theorems" about such interaction traces from abstract separation logic specifications. We present several examples of free theorems. In particular, we prove that a so-called logically atomic concurrent separation logic specification of a concurrent module operation implies that the operation is linearizable. All the results presented in this paper have been mechanized and formally proved in the Coq proof assistant using the Iris higher-order concurrent separation logic framework.


Author(s):  
Aymeric Fromherz ◽  
Aseem Rastogi ◽  
Nikhil Swamy ◽  
Sydney Gibson ◽  
Guido Martínez ◽  
...  

2020 ◽  
Vol 4 (ICFP) ◽  
pp. 1-29
Author(s):  
Glen Mével ◽  
Jacques-Henri Jourdan ◽  
François Pottier

2020 ◽  
Vol 4 (ICFP) ◽  
pp. 1-30
Author(s):  
Nikhil Swamy ◽  
Aseem Rastogi ◽  
Aymeric Fromherz ◽  
Denis Merigoux ◽  
Danel Ahman ◽  
...  

Author(s):  
Nikhil Swamy ◽  
Aseem Rastogi ◽  
Aymeric Fromherz ◽  
Denis Merigoux ◽  
Danel Ahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document