scholarly journals Total coloring of embedded graphs with maximum degree at least seven

2014 ◽  
Vol 518 ◽  
pp. 1-9 ◽  
Author(s):  
Huijuan Wang ◽  
Bin Liu ◽  
Jianliang Wu ◽  
Guizhen Liu
2010 ◽  
Vol 53 (8) ◽  
pp. 2127-2133 ◽  
Author(s):  
JianFeng Hou ◽  
JianLiang Wu ◽  
GuiZhen Liu ◽  
Bin Liu

2019 ◽  
Vol 342 (5) ◽  
pp. 1392-1402
Author(s):  
Jie Hu ◽  
Guanghui Wang ◽  
Jianliang Wu ◽  
Donglei Yang ◽  
Xiaowei Yu

Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


Author(s):  
J. Geetha ◽  
K. Somasundaram ◽  
Hung-Lin Fu

The total chromatic number [Formula: see text] is the least number of colors needed to color the vertices and edges of a graph [Formula: see text] such that no incident or adjacent elements (vertices or edges) receive the same color. Behzad and Vizing proposed a well-known total coloring conjecture (TCC): [Formula: see text], where [Formula: see text] is the maximum degree of [Formula: see text]. For the powers of cycles, Campos and de Mello proposed the following conjecture: Let [Formula: see text] denote the graphs of powers of cycles of order [Formula: see text] and length [Formula: see text] with [Formula: see text]. Then, [Formula: see text] In this paper, we prove the Campos and de Mello’s conjecture for some classes of powers of cycles. Also, we prove the TCC for complement of powers of cycles.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850018
Author(s):  
Yafang Hu ◽  
Weifan Wang

A [Formula: see text]-distance vertex-distinguishing total coloring of a graph [Formula: see text] is a proper total coloring of [Formula: see text] such that any pair of vertices at distance [Formula: see text] have distinct sets of colors. The [Formula: see text]-distance vertex-distinguishing total chromatic number [Formula: see text] of [Formula: see text] is the minimum number of colors needed for a [Formula: see text]-distance vertex-distinguishing total coloring of [Formula: see text]. In this paper, we determine the [Formula: see text]-distance vertex-distinguishing total chromatic number of some graphs such as paths, cycles, wheels, trees, unicycle graphs, [Formula: see text], and [Formula: see text]. We conjecture that every simple graph [Formula: see text] with maximum degree [Formula: see text] satisfies [Formula: see text].


2008 ◽  
Vol 22 (4) ◽  
pp. 1462-1479 ◽  
Author(s):  
Łukasz Kowalik ◽  
Jean-Sébastien Sereni ◽  
Riste Škrekovski

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Enqiang Zhu ◽  
Yongsheng Rao

A total k-coloring of a graph is an assignment of k colors to its vertices and edges such that no two adjacent or incident elements receive the same color. The total coloring conjecture (TCC) states that every simple graph G has a total ΔG+2-coloring, where ΔG is the maximum degree of G. This conjecture has been confirmed for planar graphs with maximum degree at least 7 or at most 5, i.e., the only open case of TCC is that of maximum degree 6. It is known that every planar graph G of ΔG≥9 or ΔG∈7,8 with some restrictions has a total ΔG+1-coloring. In particular, in (Shen and Wang, 2009), the authors proved that every planar graph with maximum degree 6 and without 4-cycles has a total 7-coloring. In this paper, we improve this result by showing that every diamond-free and house-free planar graph of maximum degree 6 is totally 7-colorable if every 6-vertex is not incident with two adjacent four cycles or three cycles of size p,q,ℓ for some p,q,ℓ∈3,4,4,3,3,4.


2014 ◽  
Vol 522 ◽  
pp. 54-61 ◽  
Author(s):  
Huijuan Wang ◽  
Lidong Wu ◽  
Jianliang Wu

Sign in / Sign up

Export Citation Format

Share Document