number formula
Recently Published Documents


TOTAL DOCUMENTS

526
(FIVE YEARS 225)

H-INDEX

14
(FIVE YEARS 5)

Author(s):  
Nilankush Acharya

This study investigates the Al2O3-water nanofluidic transport within an isosceles triangular compartment with top vertex downwards. The top wall is maintained isothermally cooled and left as well as right inclined walls are made uniformly heated. Two diamond-shaped obstacles are positioned inside the enclosure. The nanofluidic motion is supposed to be magnetically influenced. This investigation includes a fine analysis of how various thermal modes of obstacles affect the velocity and thermal profiles of the nanofluid. Appropriate similarity conversion leads to having a non-dimensional flow profile and is treated with Galerkin finite element scheme. The grid independency, experimental verification, and comparison assessments are directed to explore the model accuracy. The dynamic parameters like Rayleigh number [Formula: see text], nanoparticle volume fraction [Formula: see text], and Hartmann number [Formula: see text] are varied to perceive the noteworthy changes in isotherms, velocity, streamlines, and Nusselt number. The consequences specify average Nusselt number deteriorates for Hartmann number but escalates for nanoparticle concentration and Rayleigh number. Both heated and adiabatic obstacles exhibit high heat transport, while cold obstacles reveal the lowest magnitude in heat transmission. For Rayleigh number, cold obstacles reveal 34.51% heat transport enhancement, whereas it is 52.72% for heated obstacles compared to cold one. mathematics subject classification: 76W05


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402210743
Author(s):  
Sajid Rehman ◽  
Taza Gul ◽  
Waris Khan ◽  
Aamir Khan ◽  
Zeeshan

Investigations are performed for further observations of heat and mass transfer in magneto-hydrodynamic mixed-convectional nano-fluid flow with the assumption of variable viscosity and thermal-conductivity over an unsteady stretching sheet. Base fluid is Carboxy-methyl cellulose (CMC) water as a carrier fluid with different nano-particles such as [Formula: see text] (Titanium), Ag (Silver), [Formula: see text] (Aluminum), and Cu (Copper). Flow contains different physical parameters, such as heat source, chemical reaction effect, Schmidt number, and radiation absorptions effects are observed to be significant in the presences of magnetic field. Obtained equations are solved by numerically BVP4C-package (shooting method) and analytically by BVPh2.0-package (Homotopy Analysis Method “HAM”). Interested physical quantities are, viscosity-parameter ( A), Thermal-conductivity parameter ( N),Thermocapillary-number ( M), Hartmann-number (Ma), Prandtl-number (Pr), 4-nano-particles ([Formula: see text]), temperature Grashof number ([Formula: see text]), and mass Grashof number ([Formula: see text]) are the focus to the velocity, temperature, and solute concentration profiles. It is concluded that, Solute concentration of ([Formula: see text])-water has higher than the other 3-nano-fluids. Mass flux, heat flux, and Skin friction of fluids are direct functions of magnetic force, while inverse function of temperature. Magnetic force also decreased the speed of fluids and hence mass flux reduced which implies that, the temperature reduces. [Formula: see text] has also inverse relation with mass flux, heat flux, and skin friction, while direct relation with the speed of fluids. Similarly, [Formula: see text] has inverse relation with [Formula: see text], [Formula: see text], and [Formula: see text], but direct relation with [Formula: see text]. Different results are shown in graphical and tabular form.


Author(s):  
Chandan Maji

In this work, we formulated and analyzed a fractional-order epidemic model of infectious disease (such as SARS, 2019-nCoV and COVID-19) concerning media effect. The model is based on classical susceptible-infected-recovered (SIR) model. Basic properties regarding positivity, boundedness and non-negative solutions are discussed. Basic reproduction number [Formula: see text] of the system has been calculated using next-generation matrix method and it is seen that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text], otherwise unstable. The existence of endemic equilibrium point is established using the Lambert W function. The condition for global stability has been derived. Numerical simulation suggests that fractional order and media have a large effect on our system dynamics. When media impact is stronger enough, our fractional-order system stabilizes the oscillation.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Iryna Sushko ◽  
Viktor Avrutin ◽  
Laura Gardini

We consider the well-known Lozi map, which is a 2D piecewise linear map depending on two parameters. This map can be considered as a piecewise linear analog of the Hénon map, allowing to simplify the rigorous proof of the existence of a chaotic attractor. The related parameter values belong to a part of the parameter plane where the map has two saddle fixed points. In the present paper, we investigate a different part of the parameter plane, namely, the vicinity of the curve related to a center bifurcation of the fixed point. A distinguishing property of the Lozi map is that it is conservative at the parameter value corresponding to this bifurcation. As a result, the bifurcation structure close to the center bifurcation curve is quite complicated. In particular, an attracting fixed point (focus) can coexist with various attracting cycles, as well as with chaotic attractors, and the number of coexisting attractors increases as the parameter point approaches the center bifurcation curve. The main result of the present paper is related to the rigorous description of this bifurcation structure. Specifically, we obtain, in explicit form, the boundaries of the main periodicity regions associated with the pairs of complementary cycles with rotation number [Formula: see text]. Similar approach can be applied to other periodicity regions. Our study contributes also to the border collision bifurcation theory since the Lozi map is a particular case of the 2D border collision normal form.


Author(s):  
Chuangtao Chen ◽  
Zhimin He ◽  
Zhiming Huang ◽  
Haozhen Situ

Quantum state tomography (QST) is an important and challenging task in the field of quantum information, which has attracted a lot of attentions in recent years. Machine learning models can provide a classical representation of the quantum state after trained on the measurement outcomes, which are part of effective techniques to solve QST problem. In this work, we use a variational autoencoder (VAE) to learn the measurement distribution of two quantum states generated by MPS circuits. We first consider the Greenberger–Horne–Zeilinger (GHZ) state which can be generated by a simple MPS circuit. Simulation results show that a VAE can reconstruct 3- to 8-qubit GHZ states with a high fidelity, i.e., 0.99, and is robust to depolarizing noise. The minimum number ([Formula: see text]) of training samples required to reconstruct the GHZ state up to 0.99 fidelity scales approximately linearly with the number of qubits ([Formula: see text]). However, for the quantum state generated by a complex MPS circuit, [Formula: see text] increases exponentially with [Formula: see text], especially for the quantum state with high entanglement entropy.


Author(s):  
Kijung Kim

Let [Formula: see text] be a finite simple graph. A vertex [Formula: see text] is edge-vertex dominated by an edge [Formula: see text] if [Formula: see text] is incident with [Formula: see text] or [Formula: see text] is incident with a vertex adjacent to [Formula: see text]. An edge-vertex dominating set of [Formula: see text] is a subset [Formula: see text] such that every vertex of [Formula: see text] is edge-vertex dominated by an edge of [Formula: see text]. The edge-vertex domination number [Formula: see text] is the minimum cardinality of an edge-vertex dominating set of [Formula: see text]. In this paper, we prove that [Formula: see text] for every tree [Formula: see text] of order [Formula: see text] with [Formula: see text] leaves, and we characterize the trees attaining each of the bounds.


Author(s):  
Cheng Chen ◽  
Cheng-Jun He ◽  
Li-Hua Gao

This work is devoted to the studies of optimal perturbation and its transient growth characteristics in Spiral Poiseuille flow (SPF). The Poiseuille number [Formula: see text], representing the dimensionless axial pressure gradient, is varied from 0 to 20,000. The results show that for the axisymmetric case, with the increase of axial shear, the peaks of the amplitudes of azimuthal and radial velocities are both shifted towards the inner cylinder, and a second peak appears near the outer cylinder for both velocity components. Viewing the time evolution of azimuthal shear contribution [Formula: see text] and axial shear contribution [Formula: see text] to the kinetic energy growth of the optimal perturbation, while [Formula: see text] is large enough ([Formula: see text], 20,000), the Reynolds stress mechanism in the meridional plane [Formula: see text] is dominant for the transient growth behavior in SPF relative to anti-lift-up mechanism, which is dominant in the absence of axial flow for co-rotating Taylor–Couette flow with wide gap. For the oblique mode with azimuthal wave number [Formula: see text], which becomes the optimal azimuthal mode over a wide range of azimuthal wave number ([Formula: see text]–10) when [Formula: see text] is large enough, the peaks of the amplitudes of azimuthal and radial velocities are both shifted towards the outer cylinder, opposite to the axisymmetric case.


Author(s):  
Qiaoji Xu ◽  
Xiaomeng Zhang ◽  
Yue Zhang ◽  
Chunfang Zheng ◽  
James H. Leebens-Mack ◽  
...  

Using RACCROCHE, a method for reconstructing gene content and order of ancestral chromosomes from a phylogeny of extant genomes represented by the gene orders on their chromosomes, we study the evolution of three orders of woody plants. The method retrieves the monoploid complement of each Ancestor in a phylogeny, consisting a complete set of distinct chromosomes, despite some of the extant genomes being recently or historically polyploidized. The three orders are the Sapindales, the Fagales and the Malvales. All of these are independently estimated to have ancestral monoploid number [Formula: see text].


Author(s):  
Suguru Hiranuma ◽  
Gen Kawatani ◽  
Naoki Matsumoto

The domatic number [Formula: see text] of a graph [Formula: see text] is the maximum number of disjoint dominating sets in a dominating set partition of a graph [Formula: see text]. For any graph [Formula: see text], [Formula: see text] where [Formula: see text] is the minimum degree of [Formula: see text], and [Formula: see text] is domatically full if the equality holds, i.e., [Formula: see text]. In this paper, we characterize domatically full Cartesian products of a path of order 2 and a tree of order at least 3. Moreover, we show a characterization of the Cartesian product of a longer path and a tree of order at least 3. By using these results, we also show that for any two trees of order at least 3, the Cartesian product of them is domatically full.


Author(s):  
Chandra Shekar Balla ◽  
Jamuna Bodduna ◽  
SVHN Krishna Kumari ◽  
Ahmed M. Rashad

The current article investigates the effect of inclination angle on thermo-bioconvection within the porous-square shaped cavity filled with gyrotactic type microorganisms and nanofluid. The Darcy law with Boussinesq estimation is used for the momentum equation in porous media. The transformed governing equations are solved by Galerkin’s method of finite elements. The effect of inclination angle in the square cavity is interpreted by varying the angle from [Formula: see text] to [Formula: see text]. The effect of inclination on different quantities, for instance, Rayleigh number, bioconvective Rayleigh number, Peclet number, Brownian motion, heat source/sink, and ratio of buoyancy, is discussed. Further, the mean quantities of Nusselt number [Formula: see text], Sherwood number [Formula: see text], and density number [Formula: see text] are analyzed at vertical walls. A quantitative outcome of the study is that the maximum values of [Formula: see text], [Formula: see text], and [Formula: see text] are found for the angle [Formula: see text] and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document