Ammonium formate-based one-pot reductive Heck reactions for the construction of cyclic sulfonamides

2017 ◽  
Vol 58 (48) ◽  
pp. 4559-4562 ◽  
Author(s):  
Aisha Khalifa ◽  
Lorna Conway ◽  
Kimberly Geoghegan ◽  
Paul Evans
2020 ◽  
Vol 17 (3) ◽  
pp. 211-215
Author(s):  
Da Chen ◽  
Xuan Wang ◽  
Runnan Wang ◽  
Yao Zhan ◽  
Xiaohan Peng ◽  
...  

The Friedlander reaction is the most commonly used method to synthesis substituted quinolines, the essential intermediates in the medicine industry. A facile one-pot approach for synthesizing substituted quinolines by the reaction of isoxazoles, ammonium formate-Pd/C, concentrated sulfuric acid, methanol and ketones using Friedlander reaction conditions is reported. Procedures for the synthesis of quinoline derivatives were optimized, and the yield was up to 90.4%. The yield of aromatic ketones bearing electron-withdrawing groups was better than the ones with electron-donating substituents. The structures of eight substituted quinolines were characterized by MS, IR, H-NMR and 13CNMR, which were in agreement with the expected structures. The mechanism for the conversion was proposed, which involved the Pd/C catalytic hydrogen transfer reduction of unsaturated five-membered ring of isoxazole to produce ortho-amino aromatic ketones. Then the nucleophilic addition of with carbonyl of the ketones generated Schiff base in situ, which underwent an intermolecular aldol reaction followed by the elimination of H2O to give production of substituted quinolines. This new strategy can be readily applied for the construction of quinolines utilizing a diverse range of ketones and avoids the post-reaction separation of the o-amino aromatic ketone compounds. The conventionally used o-amino aromatic ketone compounds in Friedlander reaction to prepare substituted quinoline are laborious to synthesize and are apt to self-polymerize. While oxazole adopted in this work can be prepared at ease by the condensation of benzoacetonitrile and nitrobenzene derivatives under the catalysis of a strong base. Moreover, the key features of this protocol are readily available starting materials, excellent functional group tolerance, mild reaction conditions, operational simplicity, and feasibility for scaling up.


2020 ◽  
Vol 16 ◽  
pp. 1225-1233 ◽  
Author(s):  
Xiaoming Ma ◽  
Suzhi Meng ◽  
Xiaofeng Zhang ◽  
Qiang Zhang ◽  
Shenghu Yan ◽  
...  

Two kinds of [3 + 2] cycloaddition intermediates generated from the three-component reactions of 2-bromobenzaldehydes and maleimides with amino esters or amino acids were used for a one-pot N-allylation and intramolecular Heck reactions to form pyrrolidinedione-fused hexahydropyrrolo[2,1-a]isoquinolines. The multicomponent reaction was combined with one-pot reactions to make a synthetic method with good pot, atom and step economy. MeCN was used as a preferable green solvent for the reactions.


2020 ◽  
Author(s):  
Xiaoming Ma ◽  
Suzhi Meng ◽  
Xiaofeng Zhang ◽  
Qiang Zhang ◽  
Shenghu Yan ◽  
...  

Two kinds of [3+2] cycloadditions intermediates generated from the three-component reactions of 2-bromobenzaldehydes and maleimides with amino esters or amino acids were used for one-pot N-allylation and intramolecular Heck reactions to form pyrrolidinedione-fused hexahydropyrrolo[2,1-a]isoquinolines. The multicomponrnt reaction was combined with one-pot reactions to make the synthetic method with good pot, atom and step economy. MeCN was used as a preferable green solvent for the reactions.   


2017 ◽  
Vol 12 (5) ◽  
pp. 1934578X1701200
Author(s):  
Silvia Roscales ◽  
Joaquín Plumet

Metathesis reactions is firmly established as a valuable synthetic tool in organic chemistry, clearly comparable with the venerable Diels-Alder and Wittig reactions and, more recently, with the metal-catalyzed cross-coupling reactions. Metathesis reactions can be considered as a fascinating synthetic methodology, allowing different variants regarding substrate (alkene and alkyne metathesis) and type of metathetical reactions. On the other hand, tandem metathesis reactions such Ring Rearrangement Metathesis (RRM) and the coupling of metathesis reaction with other reactions of alkenes such as Diels-Alder or Heck reactions, makes metathesis one of the most powerful and reliable synthetic procedure. In particular, Ring-Rearrangement Metathesis (RRM) refers to the combination of several metathesis transformations into a domino process such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) and ROM-cross metathesis (CM) in a one-pot operation. RRM delivers complex frameworks that are difficult to assemble by conventional methods constitutingan atom economic process. RRM is applicable to mono- and polycyclic systems of varying ring sizes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, pyran systems, bicyclo[2.2.1]heptene derivatives, bicyclo[2.2.2]octene derivatives, bicyclo[3.2.1]octene derivatives and bicyclo[3.2.1]octene derivatives. In this review our attention has focused on the RRM reactions in 7-oxabicyclo[2.2.1]heptene derivatives and on their application in the synthesis of natural products or significant subunits of them.


Sign in / Sign up

Export Citation Format

Share Document