coupling reactions
Recently Published Documents





Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Geoffrey Dumonteil ◽  
Sabine Berteina-Raboin

This review describes the various synthetic methods commonly used to obtain molecules possessing conjugated dienes. We focus on methods involving cross-coupling reactions using various metals such as nickel, palladium, ruthenium, cobalt, cobalt/zinc, manganese, zirconium, or iron, mainly through examples that aimed to access natural molecules or their analogues. Among the natural molecules covered in this review, we discuss the total synthesis of a phytohormone, Acid Abscisic (ABA), carried out by our team involving the development of a conjugated diene chain.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 460
Tímea R. Kégl ◽  
László T. Mika ◽  
Tamás Kégl

Palladium-catalyzed carbonylation reactions, in the presence of nucleophiles, serve as very potent tools for the conversion of aryl and alkenyl halides or halide equivalents to carboxylic acid derivatives or to other carbonyl compounds. There are a vast number of applications for the synthesis of simple building blocks as well as for the functionalization of biologically important skeletons. This review covers the history of carbonylative coupling reactions in Hungary between the years 1994 and 2021.

Synthesis ◽  
2022 ◽  
Florencia Parpal ◽  
Ana Paula Paullier ◽  
Enrique Pandolfi ◽  
Viviana Lucía Heguaburu

The synthesis of jasmone and related jasmonoids and pyrethroids is described. These types of compounds play a defensive role in plants, and share a cyclopentenone common core, with variations in its side chains. Jasmone, cinerone, allylrethrone and derivatives are synthesized through π-allyl palladium cross coupling of stannane derivatives. By selective hydrogenation dihydrojasmone and dihydrocinerone are also synthesized.

2022 ◽  
Vol 13 (1) ◽  
Zijie Li ◽  
Qinqin Shi ◽  
Xiaoying Ma ◽  
Yawen Li ◽  
Kaikai Wen ◽  

AbstractStructural defects in conjugated copolymers are severely detrimental to the optoelectronic properties and the performance of the resulting electronic devices fabricated from them. Therefore, the much-desired precision synthesis of conjugated copolymers with highly regular repeat units is important, but presents a significant challenge to synthetic materials chemists. To this end, aryl sulfides are naturally abundant substances and offer unrealized potential in cross-coupling reactions. Here we report an efficient room temperature polycondensation protocol which implements aryl disulfide C-S activation to produce defect-minimized semiconducting conjugated copolymers with broad scope and applicability. Thus, a broad series of arylstannanes and thioethers are employed via the present protocol to afford copolymers with number-average molecular weights (Mns) of 10.0–45.0 kDa. MALDI and NMR analysis of selected copolymers reveals minimal structural defects. Moreover, the polymer trap density here is smaller and the field effect mobility higher than that in the analogous polymer synthesized through thermal-activation Stille coupling.

Synlett ◽  
2022 ◽  
Jean-François Soulé ◽  
Zhuan Zhang ◽  
Natacha Durand

AbstractTrivalent-phosphorus-containing molecules are widely used in fields ranging from catalysis to materials science. Efficient catalytic methods for their modifications, providing straightforward access to novel hybrid structures with superior catalytic activities, are highly desired to facilitate reaction improvement or discovery. We have recently developed new methods for synthesizing polyfunctional phosphines by C–C cross-couplings through rhodium-catalyzed C–H bond activation. These methods use a native P(III) atom as a directing group, and can be used in regioselective late-stage functionalization of phosphine ligands. Interestingly, some of the modified phosphines outperform their parents in Pd-catalyzed cross-coupling reactions.1 Introduction2 Early Examples of Transition-Metal-Catalyzed P(III)-Directed C–H Bond Activation/Functionalizations3 Synthesis of Polyfunctional Biarylphosphines by Late-Stage Alkylation: Application in Carboxylation Reactions4 Synthesis of Polyfunctional Biarylphosphines by Late-Stage Alkenylation: Application in Amidation Reactions5 Conclusion

2022 ◽  
Vol 12 (1) ◽  
Kootak Hong ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Sung Hwan Cho ◽  
Seeram Ramakrishna ◽  

AbstractDirect consideration for both, the catalytically active species and the host materials provides highly efficient strategies for the architecture design of nanostructured catalysts. The conventional wet chemical methods have limitations in achieving such unique layer-by-layer design possessing one body framework with many catalyst parts. Herein, an innovative physical method is presented that allows the well-regulated architecture design for an array of functional nanocatalysts as exemplified by layer-by-layer adornment of Pd nanoparticles (NPs) on the highly arrayed silica nanorods. This spatially confined catalyst exhibits excellent efficiency for the hydrogenation of nitroarenes and widely deployed Suzuki cross-coupling reactions; their facile separation from the reaction mixtures is easily accomplished due to the monolithic structure. The generality of this method for the introduction of other metal source has also been demonstrated with Au NPs. This pioneering effort highlights the feasibility of physically controlled architecture design of nanostructured catalysts which may stimulate further studies in the general domain of the heterogeneous catalytic transformations.

Synthesis ◽  
2022 ◽  
Takashi Nishikata ◽  
Tom Sheppard ◽  
Naoki Tsuchiya

The Suzuki-Miyaura coupling is extremely useful to construct Csp2-Csp2 carbon bonds. On the other hand, Csp2-Csp3 coupling reactions are do not work well, and tert-alkylative Suzuki-Miyaura coupling is particularly challenging due to problematic oxidative addition and beta-hydride elimination side reactions. In this short review, we will introduce recent examples of tert-alkylative Suzuki-Miyaura couplings with tert-alkyl electrophiles or -boron reagents. The review will mainly focus on catalyst and product structures and the proposed mechanisms .

Sign in / Sign up

Export Citation Format

Share Document