scholarly journals Shared-phase-dedicated-lane based intersection control with mixed traffic of human-driven vehicles and connected and automated vehicles

2022 ◽  
Vol 135 ◽  
pp. 103509
Author(s):  
Wanjing Ma ◽  
Jinjue Li ◽  
Chunhui Yu
2021 ◽  
Vol 152 ◽  
pp. 106006
Author(s):  
Iman Mahdinia ◽  
Amin Mohammadnazar ◽  
Ramin Arvin ◽  
Asad J. Khattak

Author(s):  
Pamela Innerwinkler ◽  
Ahu Ece Hartavi Karci ◽  
Mikko Tarkiainen ◽  
Micaela Troglia ◽  
Emrah Kinav ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiawen Wang ◽  
Shaobo Li ◽  
Yining Lu ◽  
Lubang Wang

Using a cellular automaton model, this paper studied the evolution mechanism of traffic incidents affecting the capacity of urban expressway under the mixed traffic environment of manual driving and automatic driving. It showed that the length of the automated-driving early-warning zone could affect the capacity of expressway. Specifically, the early-warning zone is divided into an accelerate lane-changing area, a decelerate lane-changing area, and a forced lane-changing area. The areas vary according to the distance between the vehicle and the location of incident. Based on the study, this paper establishes a codirectional two-lane cellular automaton model. The analysis showed that the capacity of the urban expressway varies under different combinations of early-warning area length and division ratio of early-warning zone. In the case of two-lane reduction caused by traffic incidents, the capacity of the expressway is optimized when the length of early-warning zone is between 450 and 600 m, and the ratio of accelerate zone, decelerate zone, and forced zone to the length of early-warning zone is, respectively, 75%, 10%, and 15%. In addition, this study showed that the capacity will rise with the increase in automated vehicles.


2016 ◽  
Vol 49 (3) ◽  
pp. 37-42 ◽  
Author(s):  
Eduardo Rauh Müller ◽  
Rodrigo Castelan Carlson ◽  
Werner Kraus Junior

2017 ◽  
Vol 2622 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Da Yang ◽  
Xiaoping Qiu ◽  
Lina Ma ◽  
Danhong Wu ◽  
Liling Zhu ◽  
...  

In recent years, automated vehicles have been developing rapidly, and some automated vehicles have begun to drive on highways. The market share of automated vehicles is expected to increase and will greatly affect traffic flow characteristics. This paper focuses on the mixed traffic flow of manual and automated vehicles. The study improves the existing cellular automaton model to capture the differences between manual vehicles and automated vehicles. Computer simulations are employed to analyze the characteristic variations in the mixed traffic flow under different automated vehicle proportions, lane change probabilities, and reaction times. Several new conclusions are drawn in the paper. First, with the increment of the proportion of automated vehicles, freeway capacity increases; the capacity increment is more significant for single-lane traffic than for two-lane traffic. Second, for single-lane traffic flow, reducing the reaction time of the automated vehicle can significantly improve road traffic capacity—as much as doubling it—and reaction time reduction has no obvious effect on the capacity of the two-lane traffic. Third, with the proportion increment of automated vehicles, lane change frequency reduces significantly. Fourth, when the density is 15 < ρ < 55 vehicles/km, the addition of 20% automated vehicles to a traffic flow that consisted of only manual vehicles can decrease congestion by up to 16.7%.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
S. C. Calvert ◽  
W. J. Schakel ◽  
J. W. C. van Lint

With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.


Sign in / Sign up

Export Citation Format

Share Document