flow characteristics
Recently Published Documents


TOTAL DOCUMENTS

10030
(FIVE YEARS 2471)

H-INDEX

85
(FIVE YEARS 14)

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123039
Author(s):  
Yanhong Fu ◽  
Song Wang ◽  
Xuan Xu ◽  
Yuemin Zhao ◽  
Liang Dong ◽  
...  

2022 ◽  
Vol 320 ◽  
pp. 126214
Author(s):  
Yanrong Zhang ◽  
Kai Wu ◽  
Xiaopei Cai ◽  
Liang Gao ◽  
Keran Wang ◽  
...  

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Chen Wang ◽  
Lujie Zhou ◽  
Yujing Jiang ◽  
Xuepeng Zhang ◽  
Jiankang Liu

An appropriate understanding of the hydraulic characteristics of the two-phase flow in the rock fracture network is important in many engineering applications. To investigate the two-phase flow in the fracture network, a study on the two-phase flow characteristics in the intersecting fractures is necessary. In order to describe the two-phase flow in the intersecting fractures quantitatively, in this study, a gas-water two-phase flow experiment was conducted in a smooth 3D model with intersecting fractures. The results in this specific 3D model show that the flow structures in the intersecting fractures were similar to those of the stratified wavy flow in pipes. The nonlinearity induced by inertial force and turbulence in the intersecting fractures cannot be neglected in the two-phase flow, and the Martinelli-Lockhart model is effective for the two-phase flow in intersecting fractures. Delhaye’s model can be adapted for the cases in this experiment. The turbulence of the flow can be indicated by the values of C in Delhaye’s model, but resetting the appropriate range of the values of C is necessary.


Wind ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 51-67
Author(s):  
Lun Ma ◽  
Pierre-Luc Delafin ◽  
Panagiotis Tsoutsanis ◽  
Antonis Antoniadis ◽  
Takafumi Nishino

A fully resolved (FR) NREL 5 MW turbine model is employed in two unsteady Reynolds-averaged Navier–Stokes (URANS) simulations (one with and one without the turbine tower) of a periodic atmospheric boundary layer (ABL) to study the performance of an infinitely large wind farm. The results show that the power reduction due to the tower drag is about 5% under the assumption that the driving force of the ABL is unchanged. Two additional simulations using an actuator disc (AD) model are also conducted. The AD and FR results show nearly identical tower-induced reductions of the wind speed above the wind farm, supporting the argument that the AD model is sufficient to predict the wind farm blockage effect. We also investigate the feasibility of performing delayed-detached-eddy simulations (DDES) using the same FR turbine model and periodic domain setup. The results show complex turbulent flow characteristics within the farm, such as the interaction of large-scale hairpin-like vortices with smaller-scale blade-tip vortices. The computational cost of the DDES required for a given number of rotor revolutions is found to be similar to the corresponding URANS simulation, but the sampling period required to obtain meaningful time-averaged results seems much longer due to the existence of long-timescale fluctuations.


Sign in / Sign up

Export Citation Format

Share Document