Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty

Author(s):  
Xiang Xi ◽  
Liu Changchun ◽  
Wang Yuan ◽  
Lee Loo Hay
Author(s):  
Hossein Hashemi Doulabi ◽  
Patrick Jaillet ◽  
Gilles Pesant ◽  
Louis-Martin Rousseau

This paper addresses a class of two-stage robust optimization models with an exponential number of scenarios given implicitly. We apply Dantzig–Wolfe decomposition to exploit the structure of these models and show that the original problem reduces to a single-stage robust problem. We propose a Benders algorithm for the reformulated single-stage problem. We also develop a heuristic algorithm that dualizes the linear programming relaxation of the inner maximization problem in the reformulated model and iteratively generates cuts to shape the convex hull of the uncertainty set. We combine this heuristic with the Benders algorithm to create a more effective hybrid Benders algorithm. Because the master problem and subproblem in the Benders algorithm are mixed-integer programs, it is computationally demanding to solve them optimally at each iteration of the algorithm. Therefore, we develop novel stopping conditions for these mixed-integer programs and provide the relevant convergence proofs. Extensive computational experiments on a nurse planning problem and a two-echelon supply chain problem are performed to evaluate the efficiency of the proposed algorithms.


Author(s):  
Michel Andre Minoux

This chapter is intended as an overview of robust optimization models related to optimization problems subject to uncertain data, with special focus on the case when uncertainty impacts the right-hand side coefficients in the constraints. Two-stage as well as multistage models are addressed, emphasizing links with applications and computational complexity issues. A class of multistage robust optimization problems for which exact optimal strategies can be efficiently computed (via a robust dynamic programming recursion) is discussed. An application to a multiperiod energy production planning problem is presented into detail, and computational results are reported.


Sign in / Sign up

Export Citation Format

Share Document