master problem
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 33)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Lauren M. Seal ◽  
Sara B. Mullaney ◽  
Sheldon G. Waugh

Abstract OBJECTIVE To describe the presence of Leishmania infection within the animal population receiving care from US Army Veterinary Services. ANIMALS 629 canine, feline, and equine patients of US Army Veterinary Services from 2014 to 2017. PROCEDURES Personnel at the US Army Public Health Center ran a query within the Remote Online Veterinary Record system using previously validated search terms (eg, liesh, leish, and lesh) and returned data on any patient for which the master problem list included those terms. Next, a query was run to identify all leishmaniasis testing. Records identified by queries were reviewed manually, and data were collected on patient signalment, indication for and type of testing, location of testing, and previous locations or country of the patient. RESULTS Only dogs (n = 378), not cats or horses, had been tested for leishmaniasis, 54 (14.3%) of which tested positive for Leishmania infection. More specifically, 39 of 104 (37.5%) privately owned dogs tested positive, compared with 15 of 274 (5.6%) government-owned dogs. Overall, 186 dogs had no clinical signs, 12 (6.5%) of which tested positive. Forty-four of the 54 (81%) test-positive dogs were located in or had traveled to an endemic area. CLINICAL RELEVANCE The prevalence of leishmaniasis in the various subpopulations of dogs suggested the need for additional prevalence studies. Many animals travel in and out of the US, and repeated introduction of Leishmania spp could lead to this vector-borne disease becoming endemic in the US animal and human populations. Consequently, US veterinarians need to ensure proper testing and follow-up to protect one health.


Author(s):  
Yantong Li ◽  
Jean-François Côté ◽  
Leandro Callegari-Coelho ◽  
Peng Wu

We investigate the discrete parallel machine scheduling and location problem, which consists of locating multiple machines to a set of candidate locations, assigning jobs from different locations to the located machines, and sequencing the assigned jobs. The objective is to minimize the maximum completion time of all jobs, that is, the makespan. Though the problem is of theoretical significance with a wide range of practical applications, it has not been well studied as reported in the literature. For this problem, we first propose three new mixed-integer linear programs that outperform state-of-the-art formulations. Then, we develop a new logic-based Benders decomposition algorithm for practical-sized instances, which splits the problem into a master problem that determines machine locations and job assignments to machines and a subproblem that sequences jobs on each machine. The master problem is solved by a branch-and-cut procedure that operates on a single search tree. Once an incumbent solution to the master problem is found, the subproblem is solved to generate cuts that are dynamically added to the master problem. A generic no-good cut is first proposed, which is later improved by some strengthening techniques. Two optimality cuts are also developed based on optimality conditions of the subproblem and improved by strengthening techniques. Numerical results on small-sized instances show that the proposed formulations outperform state-of-the-art ones. Computational results on 1,400 benchmark instances with up to 300 jobs, 50 machines, and 300 locations demonstrate the effectiveness and efficiency of the algorithm compared with current approaches. Summary of Contribution: This paper employs operations research methods and computing techniques to address an NP-hard combinatorial optimization problem: the parallel discrete machine scheduling and location problem. The problem is of practical significance but has not been well studied in the literature. For the problem, we formulate three novel mixed-integer linear programs that outperform state-of-the-art formulations and develop a new logic-based Benders decomposition algorithm. Extensive computational experiments on 1,400 benchmark instances with up to 300 jobs, 50 machines, and 300 locations are conducted to evaluate the performance of the proposed models and algorithms.


Author(s):  
Xiao Wu ◽  
Peng Guo ◽  
Yi Wang ◽  
Yakun Wang

AbstractIn this paper, an identical parallel machine scheduling problem with step-deteriorating jobs is considered to minimize the weighted sum of tardiness cost and extra energy consumption cost. In particular, the actual processing time of a job is assumed to be a step function of its starting time and its deteriorating threshold. When the starting time of a job is later than its deteriorating threshold, the job faces two choices: (1) maintaining its status in holding equipment and being processed with a base processing time and (2) consuming an extra penalty time to finish its processing. The two work patterns need different amounts of energy consumption. To implement energy-efficient scheduling, the selection of the pre-processing patterns must be carefully considered. In this paper, a mixed integer linear programming (MILP) model is proposed to minimize the total tardiness cost and the extra energy cost. Decomposition approaches based on logic-based Benders decomposition (LBBD) are developed by reformulating the studied problem into a master problem and some independent sub-problems. The master problem is relaxed by only making assignment decisions. The sub-problems are to find optimal schedules in the job-to-machine assignments given by the master problem. Moreover, MILP and heuristic based on Tabu search are used to solve the sub-problems. To evaluate the performance of our methods, three groups of test instances were generated inspired by both real-world applications and benchmarks from the literature. The computational results demonstrate that the proposed decomposition approaches can compute competitive schedules for medium- and large-size problems in terms of solution quality. In particular, the LBBD with Tabu search performs the best among the suggested four methods.


Author(s):  
Luciano Costa ◽  
Claudio Contardo ◽  
Guy Desaulniers ◽  
Julian Yarkony

Column generation (CG) algorithms are well known to suffer from convergence issues due, mainly, to the degenerate structure of their master problem and the instability associated with the dual variables involved in the process. In the literature, several strategies have been proposed to overcome this issue. These techniques rely either on the modification of the standard CG algorithm or on some prior information about the set of dual optimal solutions. In this paper, we propose a new stabilization framework, which relies on the dynamic generation of aggregated rows from the CG master problem. To evaluate the performance of our method and its flexibility, we consider instances of three different problems, namely, vehicle routing with time windows (VRPTW), bin packing with conflicts (BPPC), and multiperson pose estimation (MPPEP). When solving the VRPTW, the proposed stabilized CG method yields significant improvements in terms of CPU time and number of iterations with respect to a standard CG algorithm. Huge reductions in CPU time are also achieved when solving the BPPC and the MPPEP. For the latter, our method has shown to be competitive when compared with a tailored method. Summary of Contribution: Column generation (CG) algorithms are among the most important and studied solution methods in operations research. CG algorithms are suitable to cope with large-scale problems arising from several real-life applications. The present paper proposes a generic stabilization framework to address two of the main issues found in a CG method: degeneracy in the master problem and massive instability of the dual variables. The newly devised method, called dynamic separation of aggregated rows (dyn-SAR), relies on an extended master problem that contains redundant constraints obtained by aggregating constraints from the original master problem formulation. This new formulation is solved in a column/row generation fashion. The efficacy of the proposed method is tested through an extensive experimental campaign, where we solve three different problems that differ considerably in terms of their constraints and objective function. Despite being a generic framework, dyn-SAR requires the embedded CG algorithm to be tailored to the application at hand.


2021 ◽  
pp. 11-17
Author(s):  
Craig McGarty ◽  
Emma F. Thomas

In this short introduction we address four major issues for community psychologists to consider when addressing social change: a) Collective action is about social categories; b) Online technology gives to and takes away from collective action; c) Actions change the world but actions are themselves subject to change; and d) Beliefs, emotion and identity are both in-puts to and outputs of action.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2686
Author(s):  
Xiali Pang ◽  
Haiyan Zheng ◽  
Liying Huang ◽  
Yumei Liang

This paper considers the fast and effective solving method for the unit commitment (UC) problem with wind curtailment and pollutant emission in power systems. Firstly, a suitable mixed-integer quadratic programming (MIQP) model of the corresponding UC problem is presented by some linearization techniques, which is difficult to solve directly. Then, the MIQP model is solved by the outer approximation method (OAM), which decomposes the MIQP into a mixed-integer linear programming (MILP) master problem and a nonlinear programming (NLP) subproblem for alternate iterative solving. Finally, simulation results for six systems with up to 100 thermal units and one wind unit in 24 periods are presented, which show the practicality of MIQP model and the effectiveness of OAM.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6503
Author(s):  
Andrzej Karbowski

The paper presents the Generalized Benders Decomposition (GBD) method, which is now one of the basic approaches to solve big mixed-integer nonlinear optimization problems. It concentrates on the basic formulation with convex objectives and constraints functions. Apart from the classical projection and representation theorems, a unified formulation of the master problem with nonlinear and linear cuts will be given. For the latter case the most effective and, at the same time, easy to implement computational algorithms will be pointed out.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4911
Author(s):  
Jian Zhang ◽  
Mingjian Cui ◽  
Yigang He

Distributed generators providing auxiliary service are an important means of guaranteeing the safe and economic operation of a distribution system. In this paper, considering an energy storage system (ESS), switchable capacitor reactor (SCR), step voltage regulator (SVR), and a static VAR compensator (SVC), a two-stage multi-period hybrid integer second-order cone programming (SOCP) robust model with partial DGs providing auxiliary service is developed. If the conic relaxation is not exact, a sequential SOCP is formulated using convex–concave procedure (CCP) and cuts, which can be quickly solved. Moreover, the exact solution of the original problem can be recovered. Furthermore, in view of the shortcomings of the large computer storage capacity and slow computational rate for the column and constraint generation (CCG) method, a method direct iteratively solving the master and sub-problem is proposed. Increases to variables and constraints to solve the master problem are not needed. For the sub-problem, only the model of each single time period needs to be solved. Then, their objective function values are accumulated, and the worst scenarios of each time period are concatenated. As an outcome, a large amount of storage memory is saved and the computational efficiency is greatly enhanced. The capability of the proposed method is validated with three simulation cases.


2021 ◽  
Author(s):  
Nianfeng Tian ◽  
Qinglai Guo ◽  
Hongbin Sun ◽  
Xin Zhou

With the increasing development of smart grid, multiparty cooperative computation between several entities has become a typical characteristic of modern energy systems. Traditionally, data exchange among parties is inevitable, rendering how to complete multiparty collaborative optimization without exposing any private information a critical issue. This paper proposes a fully privacy-preserving distributed optimization framework based on secure multiparty computation (SMPC) secret sharing protocols. The framework decomposes the collaborative optimization problem into a master problem and several subproblems. The process of solving the master problem is executed in the SMPC framework via the secret sharing protocols among agents. The relationships of agents are completely equal, and there is no privileged agent or any third party. The process of solving subproblems is conducted by agents individually. Compared to the traditional distributed optimization framework, the proposed SMPC-based framework can fully preserve individual private information. Exchanged data among agents are encrypted and no private information disclosure is assured. Furthermore, the framework maintains a limited and acceptable increase in computational costs while guaranteeing optimality. Case studies are conducted to demonstrate the principle of secret sharing and verify the feasibility and scalability of the proposed methodology. <br>


2021 ◽  
Author(s):  
Nianfeng Tian ◽  
Qinglai Guo ◽  
Hongbin Sun ◽  
Xin Zhou

With the increasing development of smart grid, multiparty cooperative computation between several entities has become a typical characteristic of modern energy systems. Traditionally, data exchange among parties is inevitable, rendering how to complete multiparty collaborative optimization without exposing any private information a critical issue. This paper proposes a fully privacy-preserving distributed optimization framework based on secure multiparty computation (SMPC) secret sharing protocols. The framework decomposes the collaborative optimization problem into a master problem and several subproblems. The process of solving the master problem is executed in the SMPC framework via the secret sharing protocols among agents. The relationships of agents are completely equal, and there is no privileged agent or any third party. The process of solving subproblems is conducted by agents individually. Compared to the traditional distributed optimization framework, the proposed SMPC-based framework can fully preserve individual private information. Exchanged data among agents are encrypted and no private information disclosure is assured. Furthermore, the framework maintains a limited and acceptable increase in computational costs while guaranteeing optimality. Case studies are conducted to demonstrate the principle of secret sharing and verify the feasibility and scalability of the proposed methodology. <br>


Sign in / Sign up

Export Citation Format

Share Document