WITHDRAWN: The cyclophilin-D binding protein of the mitochondrial permeability transition pore may not be the adenine nucleotide translocase

Author(s):  
Anna W.C. Leung ◽  
Andrew P. Halestrap
2002 ◽  
Vol 367 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Gavin P. McSTAY ◽  
Samantha J. CLARKE ◽  
Andrew P. HALESTRAP

Opening of the mitochondrial permeability transition pore (MPTP) is sensitized to [Ca2+] by oxidative stress (diamide) and phenylarsine oxide (PAO). We have proposed that both agents cross-link two thiol groups on the adenine nucleotide translocase (ANT) involved in ADP and cyclophilin-D (CyP-D) binding. Here, we demonstrate that blocking Cys160 with 80μM eosin 5-maleimide (EMA) or 500μM N-ethylmaleimide (NEM) greatly decreased ADP inhibition of the MPTP. The ability of diamide, but not PAO, to block ADP inhibition of the MPTP was antagonized by treatment of mitochondria with 50μM NEM to alkylate matrix glutathione. Binding of detergent-solubilized ANT to a PAO-affinity matrix was prevented by pre-treatment of mitochondria with diamide, EMA or PAO, but not NEM. EMA binding to the ANT in submitochondrial particles (SMPs) was prevented by pre-treatment of mitochondria with either PAO or diamide, implying that both agents modify Cys160. Diamide and PAO pre-treatments also inhibited binding of solubilized ANT to a glutathione S-transferase—CyP-D affinity column, both effects being blocked by 100μM EMA. Intermolecular cross-linking of adjacent ANT molecules via Cys57 by copper phenanthroline treatment of SMPs was abolished by pre-treatment of mitochondria with diamide and PAO, but not with EMA. Our data suggest that PAO and diamide cause intramolecular cross-linking between Cys160 and Cys257 directly (not antagonized by 50μM NEM) or using glutathione (antagonized by 50μM NEM) respectively. This cross-linking stabilizes the ‘c’ conformation of the ANT, reducing the reactivity of Cys57, while enhancing CyP-D binding to the ANT and antagonizing ADP binding. The two effects together greatly sensitize the MPTP to [Ca2+].


1999 ◽  
Vol 341 (2) ◽  
pp. 233-249 ◽  
Author(s):  
Martin CROMPTON

This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke ‘accidental’ apoptosis.


Author(s):  
Mohan Kumar BS ◽  
Mahaboob Basha P

Ca2+ sequestration and its homeostasis is disrupted when mitochondrial membrane permeabilises to form a large opening - the mitochondrial permeability transition pore (MPTP). The MPTP formation is common during aging and age related pathologies, activating cell death pathways to avoid unhealthy consequences and malignancies in the brain tissue. Several studies have identified the participation of Cyclophilin-D (Cyp-D) and adenine nucleotide translocase(ANT) in forming MPTP. However, Ca2+ is known to participate significantly in MPTP induction, although its concentration and time dependent permeabilization mechanisms are still elusive. In this work, we have focused on the contribution of Ca2+ participation, its concentration and time taken to permeabilze the mitochondrial inner membrane as a measure of light scattering at 540 ηM. We have observed that MPTP formation is increased in mitochondria isolated from aged rats in comparison to young adult and neonatal rats. The cyclosporin A application blocks the cyclophilin interaction thus avoiding MPTP formation confirming the crucial role of Ca2+ inducted MPTP opening. A 100 µM Ca2+ incubation for 15 minutes allowed the 50% probability of formation of MPTP in mitochondria isolated from all age groups. Thus, alleviating its role in aging and neurodegeneration.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jinkun Xi ◽  
Huihua Wang ◽  
Guillaume Chanoit ◽  
Guang Cheng ◽  
Robert A Mueller ◽  
...  

Although resveratrol has been demonstrated to be cardioprotective, the detailed cellular and molecular mechanisms that mediate the protection remain elusive. We aimed to determine if resveratrol protects the heart at reperfusion by modulating the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β (GSK-3β). Resveratrol (10μM) given at reperfusion reduced infarct size (12.2 ± 2.5 % of risk zone vs. 37.9 ± 3.1 % of risk zone in control, n = 6) in isolated rat hearts subjected to 30 min regional ischemia followed by 2 h of reperfusion, an effect that was abrogated by the mPTP opener atractyloside (30.9 ± 8.1 % of risk zone), implying that resveratrol may protect the heart at reperfusion by modulating the mPTP opening. To define the signaling mechanism underlying the action of resveratrol, we determined GSK-3β activity by measuring its phosphorylation at Ser 9 . Resveratrol significantly enhanced GSK-3β phosphorylation upon reperfusion (225.2 ± 30.0 % of control at 5 min of reperfusion). Further experiments showed that resveratrol induces translocation of GSK-3β to mitochondria and translocated GSK-3β interacts with the mPTP component cyclophilin D but not VDAC (the voltage-dependent anion channel) or ANT (the adenine nucleotide translocator) in cardiac mitochondria. Taken together, these data suggest that resveratrol prevents myocardial reperfusion injury by targeting the mPTP opening via GSK-3β. Translocation of GSK-3β to mitochondria and its interaction with the mPTP component cyclophilin D may serve as an essential mechanism that mediates the protective effect of resveratrol on reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document