Abstract 168: Resveratrol Translocates Gsk-3β To Mitochondria And Protects The Heart At Reperfusion By Targeting The Mitochondrial Permeability Transition Pore

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jinkun Xi ◽  
Huihua Wang ◽  
Guillaume Chanoit ◽  
Guang Cheng ◽  
Robert A Mueller ◽  
...  

Although resveratrol has been demonstrated to be cardioprotective, the detailed cellular and molecular mechanisms that mediate the protection remain elusive. We aimed to determine if resveratrol protects the heart at reperfusion by modulating the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β (GSK-3β). Resveratrol (10μM) given at reperfusion reduced infarct size (12.2 ± 2.5 % of risk zone vs. 37.9 ± 3.1 % of risk zone in control, n = 6) in isolated rat hearts subjected to 30 min regional ischemia followed by 2 h of reperfusion, an effect that was abrogated by the mPTP opener atractyloside (30.9 ± 8.1 % of risk zone), implying that resveratrol may protect the heart at reperfusion by modulating the mPTP opening. To define the signaling mechanism underlying the action of resveratrol, we determined GSK-3β activity by measuring its phosphorylation at Ser 9 . Resveratrol significantly enhanced GSK-3β phosphorylation upon reperfusion (225.2 ± 30.0 % of control at 5 min of reperfusion). Further experiments showed that resveratrol induces translocation of GSK-3β to mitochondria and translocated GSK-3β interacts with the mPTP component cyclophilin D but not VDAC (the voltage-dependent anion channel) or ANT (the adenine nucleotide translocator) in cardiac mitochondria. Taken together, these data suggest that resveratrol prevents myocardial reperfusion injury by targeting the mPTP opening via GSK-3β. Translocation of GSK-3β to mitochondria and its interaction with the mPTP component cyclophilin D may serve as an essential mechanism that mediates the protective effect of resveratrol on reperfusion injury.

2008 ◽  
Vol 295 (3) ◽  
pp. H1227-H1233 ◽  
Author(s):  
Guillaume Chanoit ◽  
SungRyul Lee ◽  
Jinkun Xi ◽  
Min Zhu ◽  
Rachel A. McIntosh ◽  
...  

The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3β (GSK-3β). The treatment of cardiac H9c2 cells with ZnCl2 (10 μM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3β phosphorylation at Ser9, indicating that exogenous zinc can inactivate GSK-3β in H9c2 cells. The effect of zinc on GSK-3β activity was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 but not by the mammalian target of rapamycin (mTOR) inhibitor rapamycin or the PKC inhibitor chelerythrine, implying that PI3K but not mTOR or PKC accounts for the action of zinc. In support of this interpretation, zinc induced a significant increase in Akt but not mTOR phosphorylation. Further experiments found that zinc also increased mitochondrial GSK-3β phosphorylation. This may indicate an involvement of the mitochondria in the action of zinc. The effect of zinc on mitochondrial GSK-3β phosphorylation was not altered by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. Zinc applied at reperfusion reduced cell death in cells subjected to simulated ischemia/reperfusion, indicating that zinc can prevent reperfusion injury. However, zinc was not able to exert protection in cells transfected with the constitutively active GSK-3β (GSK-3β-S9A-HA) mutant, suggesting that zinc prevents reperfusion injury by inactivating GSK-3β. Cells transfected with the catalytically inactive GSK-3β (GSK-3β-KM-HA) also revealed a significant decrease in cell death, strongly supporting the essential role of GSK-3β inactivation in cardioprotection. Moreover, zinc prevented oxidant-induced mPTP opening through the inhibition of GSK-3β. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the mPTP opening through the inactivation of GSK-3β. The PI3K/Akt signaling pathway is responsible for the inactivation of GSK-3β by zinc.


2019 ◽  
Vol 294 (28) ◽  
pp. 10807-10818 ◽  
Author(s):  
Stephen Hurst ◽  
Ariele Baggett ◽  
Gyorgy Csordas ◽  
Shey-Shing Sheu

The mitochondrial matrix ATPase associated with diverse cellular activities (m-AAA) protease spastic paraplegia 7 (SPG7) has been recently implicated as either a negative or positive regulatory component of the mitochondrial permeability transition pore (mPTP) by two research groups. To address this controversy, we investigated possible mechanisms that explain the discrepancies between these two studies. We found that loss of the SPG7 gene increased resistance to Ca2+-induced mPTP opening. However, this occurs independently of cyclophilin D (cyclosporine A insensitive) rather it is through decreased mitochondrial Ca2+ concentrations and subsequent adaptations mediated by impaired formation of functional mitochondrial Ca2+ uniporter complexes. We found that SPG7 directs the m-AAA complex to favor association with the mitochondrial Ca2+ uniporter (MCU) and MCU processing regulates higher order MCU-complex formation. The results suggest that SPG7 does not constitute a core component of the mPTP but can modulate mPTP through regulation of the basal mitochondrial Ca2+ concentration.


2011 ◽  
Vol 300 (3) ◽  
pp. H922-H930 ◽  
Author(s):  
Jiang Zhu ◽  
Mario J. Rebecchi ◽  
Peter S. A. Glass ◽  
Peter R. Brink ◽  
Lixin Liu

It is well established that inhibition of glycogen synthase kinase (GSK)-3β in the young adult myocardium protects against ischemia-reperfusion (I/R) injury through inhibition of mitochondrial permeability transition pore (mPTP) opening. Here, we investigated age-associated differences in the ability of GSK-3β inhibitor [SB-216763 (SB)] to protect the heart and to modulate mPTP opening during I/R injury. Fischer 344 male rats were assigned from their respective young or old age groups. Animals were subjected to 30 min ischemia following 120 min reperfusion to determine myocardial infarction (MI) size in vivo. Ischemic tissues were collected 10 min after reperfusion for nicotinamide adenine dinucleotide (NAD+) measurements and immunoblotting. In parallel experiments, ventricular myocytes isolated from young or old rats were exposed to oxidative stress through generation of reactive oxygen species (ROS), and mPTP opening times were measured by using confocal microscopy. Our results showed that SB decreased MI in young SB-treated rats compared with young untreated I/R animals, whereas SB failed to significantly affect MI in the old animals. SB also significantly increased GSK-3β phosphorylation in young rats, but phosphorylation levels were already highly elevated in old control groups. There were no significant differences observed between SB-treated and untreated old animals. NAD+levels were better maintained in young SB-treated animals compared with the young untreated group during I/R, but this relative improvement was not observed in old animals. SB also significantly prolonged the time to mPTP opening induced by ROS in young cardiomyocytes, but not in aged cardiomyocytes. These results demonstrate that this GSK-3β inhibitor fails to protect the aged myocardium in response to I/R injury or prevent mPTP opening following a rise in ROS and suggest that healthy aging alters mPTP regulation by GSK-3β.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Tiffany T Nguyen ◽  
Mark V Stevens ◽  
Mark J Kohr ◽  
Charles Steenbergen ◽  
Michael N Sack ◽  
...  

S-nitrosylation (SNO), a reversible, redox-dependent post-translational modification, has emerged as an important mechanism for dynamic regulation of many proteins. Our previous studies have shown that protein S-nitrosylation (SNO) plays a protective role in myocardial ischemia/reperfusion (IR) injury. The primary mediator of cell death in I/R injury is activation of the mitochondrial permeability transition pore (mPTP). Using a proteomic approach, we have previously found that cyclophilin D (CypD), a critical mPTP regulator, can be SNO on cysteine 203 (C203). To investigate whether SNO of CypD might attenuate mPTP activation, we mutated cysteine 203 of CypD, to a serine residue (C203S) and determined its effects on mPTP opening by assessing H 2 O 2 -induced mPTP opening using the calcein AM-cobalt chloride quenching method. Treatment of CypD -/- mouse embryonic fibroblasts (MEFs) with H 2 O 2 resulted loss in an ≈50 % loss of mPTP opening as compared to WT MEFs (n=5, p<0.05), consistent with the protective role of CypD in mPTP activation. Addition of a nitric oxide donor, GSNO, to CypD -/- MEFs did not further reduce mPTP opening; however, WT MEFs treated GSNO attenuated mPTP opening by half. To elucidate the role of SNO of C203 on CypD, we infected CypD -/- MEFs with a C203S-CypD vector. C203S-CypD re-constituted MEFs were also resistant to mPTP opening in the presence or absence of GSNO. This suggests that C203 is required for mPTP activation. To determine whether in vivo expression of C203S-CypD would alter mPTP opening, we generated adenovirus vectors encoding WT CypD or mutated C203S-CypD and injected these viral particles into CypD -/- mice via tail-vein. Mitochondria isolated from livers of CypD -/- mice or mice expressing C203S-CypD were resistant to Ca 2+ -induced swelling as compared to WT CypD reconstituted mice. In summary, our results indicate that C203 of CypD is required for mPTP opening and for the first time shows that SNO of C203 on CypD acts to attenuate mPTP activation.


2010 ◽  
Vol 298 (2) ◽  
pp. H601-H607 ◽  
Author(s):  
Jinkun Xi ◽  
Wei Tian ◽  
Lei Zhang ◽  
Yulan Jin ◽  
Zhelong Xu

The aim of this study was to test whether morphine prevents the mitochondrial permeability transition pore (mPTP) opening through Zn2+ and glycogen synthase kinase 3β (GSK-3β). Fluorescence dyes including Newport Green Dichlorofluorescein (DCF), 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), and tetramethylrhodamine ethyl ester (TMRE) were used to image free Zn2+, nitric oxide (NO), and mitochondrial membrane potential (ΔΨm), respectively. Fluorescence images were obtained with confocal microscopy. Cardiomyocytes treated with morphine for 10 min showed a significant increase in Newport Green DCF fluorescence intensity, an effect that was reversed by the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME), indicating that morphine mobilizes Zn2+ via NO. Morphine rapidly produced NO. ODQ and NS2028, the inhibitors of guanylyl cyclase, prevented Zn2+ release by morphine, implying that cGMP is involved in the action of morphine. The effect of morphine on Zn2+ release was also abolished by KT5823, a specific inhibitor of protein kinase G (PKG). Morphine prevented oxidant-induced loss of ΔΨm, indicating that morphine can modulate the mPTP opening. The effect of morphine on the mPTP was reversed by KT5823 and the Zn2+ chelator N, N, N′, N′-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN). The action of morphine on the mPTP was lost in cells transfected with the constitutively active GSK-3β mutant, suggesting that morphine may prevent the mPTP opening by inactivating GSK-3β. In support, morphine significantly enhanced phosphorylation of GSK-3β at Ser9, and this was blocked by TPEN. GSK-3β small interfering RNA prevented the pore opening in the control cardiomyocytes but failed to enhance the effect of morphine on the mPTP opening. In conclusion, morphine mobilizes intracellular Zn2+ through the NO/cGMP/PKG signaling pathway and prevents the mPTP opening by inactivating GSK-3β through Zn2+.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yonggui He ◽  
Jinkun Xi ◽  
Huan Zheng ◽  
Yidong Zhang ◽  
Yuanzhe Jin ◽  
...  

Objective. This study aimed to investigate whether astragaloside IV modulates the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β(GSK-3β) in H9c2 cells.Methods. H9c2 cells were exposed to astragaloside IV for 20 min. GSK-3β(Ser9), Akt (Ser473), and VASP (Ser239) activities were determined with western blot. The mPTP opening was evaluated by measuring mitochondrial membrane potential (ΔΨm). Nitric oxide (NO) generation was measured by 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) diacetate. Fluorescence images were obtained with confocal microscopy.Results. Astragaloside IV significantly enhanced GSK-3βphosphorylation and prevented H2O2-induced loss ofΔΨm. These effects of astragaloside IV were reversed by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the NO sensitive guanylyl cyclase selective inhibitor ODQ, and the PKG inhibitor KT5823. Astragaloside IV activated Akt and PKG. Astragaloside IV was also shown to increase NO production, an effect that was reversed by L-NAME and LY294002. Astragaloside IV applied at reperfusion reduced cell death caused by simulated ischemia/reperfusion, indicating that astragaloside IV can prevent reperfusion injury. Conclusions. These data suggest that astragaloside IV prevents the mPTP opening and reperfusion injury by inactivating GSK-3βthrough the NO/cGMP/PKG signaling pathway. NOS is responsible for NO generation and is activated by the PI3K/Akt pathway.


Author(s):  
Martin John Lewis ◽  
Igor Khaliulin ◽  
Katie Hall ◽  
M.Saadeh Suleiman

Metabolic and ionic changes during ischaemia predispose the heart to the damaging effects of reperfusion. Such changes and the resulting injury differ between immature and adult heart. Therefore, cardioprotective strategies for adults need to be tested in immature heart. We have recently shown that simultaneous activation of PKA and EPAC confers marked cardioprotection in adult hearts. The aim of this study is to investigate the efficacy of this intervention in immature hearts and determine whether the mitochondrial permeability transition pore (MPTP) is involved. Isolated perfused Langendorff hearts from both adult and immature rats were exposed to global ischaemia and reperfusion injury (I/R) following control perfusion or perfusion after an equilibra-tion period with activators of PKA and/or EPAC. Functional outcome and reperfusion injury were measured and in parallel, mitochondria were isolated following 5 min reperfusion to determine whether cardioprotective interventions involved changes in MPTP opening behaviour. Perfusion for 5 minutes preceding ischaemia of injury- matched adult and immature hearts with 5 &micro;M 8-Br (8-Br-cAMP-AM), an activator of both PKA and EPAC, led to significant reduction in post-reperfusion CK release and infarct size. Perfusion with this agent also led to a reduction in MPTP opening propensity in both adult and immature hearts. These data show that immature hearts are innately more resistant to I/R injury than adults, and that this is due to a reduced ten-dency to MPTP opening following reperfusion. Further, simultaneous stimulation of PKA &amp; EPAC causes cardioprotection which is additive to the innate resistance.


2009 ◽  
Vol 297 (4) ◽  
pp. H1487-H1493 ◽  
Author(s):  
Giuseppe Petrosillo ◽  
Giuseppe Colantuono ◽  
Nicola Moro ◽  
Francesca M. Ruggiero ◽  
Edy Tiravanti ◽  
...  

Melatonin, a well-known antioxidant, has been shown to protect against ischemia-reperfusion myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during ischemia-reperfusion and therefore a possible target for cardioprotection. In the present study, we tested the hypothesis that melatonin could protect heart against ischemia-reperfusion injury by inhibiting MPTP opening. Isolated perfused rat hearts were subjected to global ischemia and reperfusion in the presence or absence of melatonin in a Langerdoff apparatus. Melatonin treatment significantly improves the functional recovery of Langerdoff hearts on reperfusion, reduces the infarct size, and decreases necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria isolated from melatonin-treated hearts are less sensitive than mitochondria from reperfused hearts to MPTP opening as demonstrated by their higher resistance to Ca2+. Similar results were obtained following treatment of ischemic-reperfused rat heart with cyclosporine A, a known inhibitor of MPTP opening. In addition, melatonin prevents mitochondrial NAD+ release and mitochondrial cytochrome c release and, as previously shown, cardiolipin oxidation associated with ischemia-reperfusion. Together, these results demonstrate that melatonin protects heart from reperfusion injury by inhibiting MPTP opening, probably via prevention of cardiolipin peroxidation.


Sign in / Sign up

Export Citation Format

Share Document