cross linking
Recently Published Documents





2022 ◽  
Vol 164 ◽  
pp. 106691
Yang Liu ◽  
Kenneth Tran ◽  
Kevin Ho ◽  
Jessica Emsermann ◽  
Margaret Zhang ◽  

2022 ◽  
Vol 4 (1) ◽  
Liying Sun ◽  
Shan Li ◽  
Kaifeng Yang ◽  
Junchao Wang ◽  
Zhengjun Li ◽  

AbstractIn this study, we aimed at constructing polycaprolactone (PCL) reinforced keratin/bioactive glass composite scaffolds with a double cross-linking network structure for potential bone repair application. Thus, the PCL-keratin-BG composite scaffold was prepared by using keratin extracted from wool as main organic component and bioactive glass (BG) as main inorganic component, through both cross-linking systems, such as the thiol-ene click reaction between abundant sulfhydryl groups of keratin and the unsaturated double bond of 3-methacryloxy propyltrimethoxy silane (MPTS), and the amino-epoxy reaction between amino groups of keratin and the epoxy group in (3-glycidoxymethyl) methyldiethoxysilane (GPTMS) molecule, along with introduction of PCL as a reinforcing agent. The success of the thiol-ene reaction was verified by the FTIR and 1H-NMR analyses. And the structure of keratin-BG and PCL-keratin-BG composite scaffolds were studied and compared by the FTIR and XRD characterization, which indicated the successful preparation of the PCL-keratin-BG composite scaffold. In addition, the SEM observation, and contact angle and water absorption rate measurements demonstrated that the PCL-keratin-BG composite scaffold has interconnected porous structure, appropriate pore size and good hydrophilicity, which is helpful to cell adhesion, differentiation and proliferation. Importantly, compression experiments showed that, when compared with the keratin-BG composite scaffold, the PCL-keratin-BG composite scaffold increased greatly from 0.91 ± 0.06 MPa and 7.25 ± 1.7 MPa to 1.58 ± 0.21 MPa and 14.14 ± 1.95 MPa, respectively, which suggesting the strong reinforcement of polycaprolactone. In addition, the biomineralization experiment and MTT assay indicated that the PCL-keratin-BG scaffold has good mineralization ability and no-cytotoxicity, which can promote cell adhesion, proliferation and growth. Therefore, the results suggested that the PCL-keratin-BG composite scaffold has the potential as a candidate for application in bone regeneration field. Graphical Abstract

2022 ◽  
Jasjot Singh ◽  
Hadeer Elhabashy ◽  
Pathma Muthukottiappan ◽  
Markus Stepath ◽  
Martin Eisenacher ◽  

Lysosomes are well-established as the main cellular organelles for the degradation of macromolecules and emerging as regulatory centers of metabolism. They are of crucial importance for cellular homeostasis, which is exemplified by a plethora of disorders related to alterations in lysosomal function. In this context, protein complexes play a decisive role, regulating not only metabolic lysosomal processes, but also lysosome biogenesis, transport, and interaction with other organelles. Using cross-linking mass spectrometry, we analyzed lysosomes and early endosomes. Based on the identification of 5,376 cross-links, we investigated protein-protein interactions and structures of lysosome- and endosome-related proteins. In particular, we present evidence for a tetrameric assembly of the lysosomal hydrolase PPT1 and heterodimeric/-multimeric structures of FLOT1/FLOT2 at lysosomes and early endosomes. For FLOT1-/FLOT2-positive early endosomes, we identified >300 proteins presenting putative cargo, and confirm the latrophilin family of adhesion G protein-coupled receptors as substrates for flotillin-dependent endocytosis.

Tanveer Ahmed Shaik ◽  
Enrico Baria ◽  
Xinyue Wang ◽  
Florian Korinth ◽  
João L. Lagarto ◽  

Yuefeng Deng ◽  
Jie Ouyang ◽  
Hu Liu ◽  
Jianjun Wang ◽  
Yihui Zhu ◽  

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 134
Christian Voelter ◽  
Joachim Rösler

By coarsening of the γ’-precipitates and selective extraction of one of the two existing phases, porous structures can be produced from nickel-based superalloys. There are two basic approaches to achieve a bicontinuous γ/γ’-microstructure—directional and incoherent coarsening. Single crystalline superalloy membranes are produced by the so-called rafting of the microstructure, i.e., directional coarsening. Unlike this process, incoherently coarsened membranes lack a detailed understanding of the mechanisms leading to cross-linking of the precipitates. In this paper, the growth and coalescence of precipitates during initial slow cooling from above the γ’ solvus temperature was studied. In addition to the three-dimensional morphological changes of the precipitates, it is also shown that only little coalescence of the particles occurs despite the high γ’ content and, therefore, their very small distance. The loss of coherency that occurs during this part of coarsening must first advance through further aging before a bicontinuous microstructure is formed.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 446
Anne Lamp ◽  
Martin Kaltschmitt ◽  
Jan Dethloff

While bio-based but chemically synthesized polymers such as polylactic acid require industrial conditions for biodegradation, protein-based materials are home compostable and show high potential for disposable products that are not collected. However, so far, such materials lack in their mechanical properties to reach the requirements for, e.g., packaging applications. Relevant measures for such a modification of protein-based materials are plasticization and cross-linking; the former increasing the elasticity and the latter the tensile strength of the polymer matrix. The assessment shows that compared to other polymers, the major bottleneck of proteins is their complex structure, which can, if developed accordingly, be used to design materials with desired functional properties. Chemicals can act as cross-linkers but require controlled reaction conditions. Physical methods such as heat curing and radiation show higher effectiveness but are not easy to control and can even damage the polymer backbone. Concerning plasticization, effectiveness and compatibility follow opposite trends due to weak interactions between the plasticizer and the protein. Internal plasticization by covalent bonding surpasses these limitations but requires further research specific for each protein. In addition, synergistic approaches, where different plasticization/cross-linking methods are combined, have shown high potential and emphasize the complexity in the design of the polymer matrix.

Sign in / Sign up

Export Citation Format

Share Document