scholarly journals Lower bounds for the cardinality of minimal blocking sets in projective spaces

2003 ◽  
Vol 270 (1-3) ◽  
pp. 13-31 ◽  
Author(s):  
Martin Bokler
2007 ◽  
Vol 19 (3) ◽  
pp. 99-111
Author(s):  
L.Yasin Nada Yassen Kasm Yahya ◽  
Abdul Khalik

2021 ◽  
Vol 72 ◽  
pp. 101814
Author(s):  
Nanami Bono ◽  
Tatsuya Maruta ◽  
Keisuke Shiromoto ◽  
Kohei Yamada

1980 ◽  
Vol 32 (3) ◽  
pp. 628-630 ◽  
Author(s):  
Aiden A. Bruen

In what follows, a theorem on blocking sets is generalized to higher dimensions. The result is then used to study maximal partial spreads of odd-dimensional projective spaces.Notation. The number of elements in a set X is denoted by |X|. Those elements in a set A which are not in the set Bare denoted by A — B. In a projective space Σ = PG(n, q) of dimension n over the field GF(q) of order q, ┌d(Ωd, Λd, etc.) will mean a subspace of dimension d. A hyperplane of Σ is a subspace of dimension n — 1, that is, of co-dimension one.A blocking set in a projective plane π is a subset S of the points of π such that each line of π contains at least one point in S and at least one point not in S. The following result is shown in [1], [2].


2011 ◽  
Vol 19 (4) ◽  
pp. 313-316 ◽  
Author(s):  
Antonio Cossidente ◽  
Oliver H. King

2003 ◽  
Vol 11 (3) ◽  
pp. 162-169 ◽  
Author(s):  
J. Barát ◽  
S. Innamorati

10.37236/5717 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jan De Beule ◽  
Tamás Héger ◽  
Tamás Szőnyi ◽  
Geertrui Van de Voorde

In this paper, by using properties of Baer subplanes, we describe the construction of a minimal blocking set in the Hall plane of order $q^2$ of size $q^2+2q+2$ admitting $1-$, $2-$, $3-$, $4-$, $(q+1)-$ and $(q+2)-$secants. As a corollary, we obtain the existence of a minimal blocking set of a non-Desarguesian affine plane of order $q^2$ of size at most $4q^2/3+5q/3$, which is considerably smaller than $2q^2-1$, the Jamison bound for the size of a minimal blocking set in an affine Desarguesian plane of order $q^2$.We also consider particular André planes of order $q$, where $q$ is a power of the prime $p$, and give a construction of a small minimal blocking set which admits a secant line not meeting the blocking set in $1$ mod $p$ points. Furthermore, we elaborate on the connection of this problem with the study of value sets of certain polynomials and with the construction of small double blocking sets in Desarguesian projective planes; in both topics we provide some new results.


10.37236/446 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
G. Van De Voorde

A small minimal $k$-blocking set $B$ in $\mathrm{PG}(n,q)$, $q=p^t$, $p$ prime, is a set of less than $3(q^k+1)/2$ points in $\mathrm{PG}(n,q)$, such that every $(n-k)$-dimensional space contains at least one point of $B$ and such that no proper subset of $B$ satisfies this property. The linearity conjecture states that all small minimal $k$-blocking sets in $\mathrm{PG}(n,q)$ are linear over a subfield $\mathbb{F}_{p^e}$ of $\mathbb{F}_q$. Apart from a few cases, this conjecture is still open. In this paper, we show that to prove the linearity conjecture for $k$-blocking sets in $\mathrm{PG}(n,p^t)$, with exponent $e$ and $p^e\geq 7$, it is sufficient to prove it for one value of $n$ that is at least $2k$. Furthermore, we show that the linearity of small minimal blocking sets in $\mathrm{PG}(2,q)$ implies the linearity of small minimal $k$-blocking sets in $\mathrm{PG}(n,p^t)$, with exponent $e$, with $p^e\geq t/e+11$.


1978 ◽  
Vol 30 (4) ◽  
pp. 856-862
Author(s):  
Gary L. Ebert

Blocking sets in projective spaces have been of interest for quite some time, having applications to game theory (see [6; 7]) as well as finite nets and partial spreads (see [5]). In [4] Bruen showed that if B is a blocking set in a projective plane of order n, then


Sign in / Sign up

Export Citation Format

Share Document