scholarly journals THE FACILITATORY EFFECT OF ELECTRICAL STIMULATION OF THE BRAIN STEM RETICULAR FORMATION ON THE RESERPINE INDUCED SPIKE WAVES RECORDED FROM THE MEDIAL NUCLEUS TRAPEZOIDES IN THE RABBIT

1973 ◽  
Vol 23 ◽  
pp. 79
Author(s):  
Kiyoshi Kimura ◽  
Yojiro Ukai ◽  
Katsuya Ohata ◽  
Hiroshi Takagi
2000 ◽  
Vol 84 (4) ◽  
pp. 1942-1948 ◽  
Author(s):  
T. Hajnik ◽  
Y. Y. Lai ◽  
J. M. Siegel

Electrical stimulation of circumscribed areas of the pontine and medullary reticular formation inhibits muscle tone in cats. In this report, we present an analysis of the anatomical distribution of atonia-inducing stimulation sites in the brain stem of the rat. Muscle atonia could be elicited by electrical stimulation of the nuclei reticularis pontis oralis and caudalis in the pons as well as the nuclei gigantocellularis, gigantocellularis alpha, gigantocellularis ventralis, and paragigantocellularis dorsalis in the medulla of decerebrate rats. This inhibitory effect on muscle tone was a function of the intensity and frequency of the electrical stimulation. Average latencies of muscle-tone suppressions elicited by electrical stimulation of the pontine reticular formation were 11.02 ± 2.54 and 20.49 ± 3.39 (SD) ms in the neck and in the hindlimb muscles, respectively. Following medullary stimulation, these latencies were 11.29 ± 2.44 ms in the neck and 18.87 ± 2.64 ms in the hindlimb muscles. Microinjection of N-methyl-d-aspartate (NMDA, 7 mM/0.1 μl) agonists into the pontine and medullary inhibitory sites produced muscle-tone facilitation, whereas quisqualate (10 mM/0.1 μl) injection induced an inhibition of muscle tone. NMDA-induced muscle tone change had a latency of 31.8 ± 35.3 s from the pons and 10.5 ± 0.7 s from the medulla and a duration of 146.7 ± 95.2 s from the pons and 55.5 ± 40.4 s from the medulla. The latency of quisqualate (QU)-induced reduction of neck muscle tone was 30.1 ± 37.9 s after pontine and 39.5 ± 21.8 s after medullary injection. The duration of muscle-tone suppression induced by QU injection into the pons and medulla was 111.5 ± 119.2 and 169.2 ± 145.3 s. Smaller rats (8 wk old) had a higher percentage of sites producing muscle-tone inhibition than larger rats (16 wk old), indicating an age-related change in the function of brain stem inhibitory systems. The anatomical distribution of atonia-related sites in the rat has both similarities and differences with the distribution found in the cat, which can be explained by the distinct anatomical organization of the brain stem in these two species.


1989 ◽  
Vol 257 (1) ◽  
pp. G24-G29
Author(s):  
W. D. Barber ◽  
C. S. Yuan

The brain stem neuronal responses to electrical stimulation of gastric branches of the ventral vagal trunk serving the proximal stomach were localized and evaluated in anesthetized cats. The responses were equally distributed bilaterally in the region of nucleus solitarius in the caudal brain stem. The mean latency of the response was 289 +/- 46 (SD) ms, which translated into a conduction velocity of less than 1 m/s based on the distance between the stimulating and recording electrodes. The responses consisted of single and multiple spikes that showed slight variability in the latency, indicating orthodromic activation via a synapse in approximately 98% of the responses recorded. Forty two percent of the units tested showed evidence of convergence of input from vagal afferent fibers in different branches of the ventral vagal trunk that served the proximal stomach. The resultant activity pattern of the unitary response appeared to be the product of 1) the gastric sensory input or modality conveyed by the afferent source and 2) the time of arrival and diversity of modalities served by other gastric afferents impinging on the unit. This provides a mechanism capable of responding on the basis of specific sensory modalities that dynamically reflect ongoing events monitored and conveyed by other gastric afferents in the region.


1960 ◽  
Vol 198 (6) ◽  
pp. 1312-1314 ◽  
Author(s):  
Tatuzi Suzuki ◽  
Elijah B. Romanoff ◽  
Werner P. Koella ◽  
Charles K. Levy

In unanesthetized dogs, adrenal venous blood was collected and its plasma content of 17-hydroxycorticosteroids (17-OHCS) estimated. Electrodes were implanted in the brain stem and electrical stimulation was performed. The location of the electrode tips was verified histologically. After stimulation of the lower posterior hypothalamic area, as well as the lower thalamic area, the adrenal 17-OHCS secretion rate increased markedly. When the upper posterior hypothalamic area, or the area preoptica was stimulated, the slight increase in 17-OHCS secretion rate first observed was followed by a marked decrease below the prestimulation level. Stimulation of the capsula interna produced no response in adrenal cortical secretion.


Sign in / Sign up

Export Citation Format

Share Document