medullary reticular formation
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 9)

H-INDEX

37
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Alejandro J. Pernía-Andrade ◽  
Nikolaus Wenger ◽  
Maria S. Esposito ◽  
Philip Tovote

Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.


Author(s):  
Jeremy W. Chopek ◽  
Ying Zhang ◽  
Robert M. Brownstone

Glutamatergic reticulospinal neurons in the gigantocellular reticular nucleus (GRN) of the medullary reticular formation can function as command neurons, transmitting motor commands to spinal cord circuits to instruct movement. Recent advances in our understanding of this neuron-dense region have been facilitated by the discovery of expression of the transcriptional regulator, Chx10, in excitatory reticulospinal neurons. Here, we address the capacity of local circuitry in the GRN to contribute to reticulospinal output. We define two sub-populations of Chx10-expressing neurons in this region, based on distinct electrophysiological properties and somata size (small and large), and show that these populations correspond to local interneurons and reticulospinal neurons, respectively. Using focal release of caged glutamate combined with patch clamp recordings, we demonstrated that Chx10 neurons form microcircuits in which the Chx10 local interneurons project to and facilitate the firing of Chx10 reticulospinal neurons. We discuss the implications of these microcircuits in terms of movement selection.


2021 ◽  
Author(s):  
Martha L Streng ◽  
Madison R Tetzlaff ◽  
Esther Krook-Magnuson

Despite being canonically considered a motor control structure, the cerebellum is increasingly recognized for important roles in processes beyond this traditional framework, including seizure suppression. Excitatory fastigial neurons project to a large number of downstream targets, and it is unclear if this broad targeting underlies seizure suppression, or if a specific output may be sufficient. To address this question, we used the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, male and female animals, and a dual-virus approach to selectively label and manipulate fastigial outputs. We examined fastigial neurons projecting to the superior colliculus, medullary reticular formation, and central lateral nucleus of the thalamus, and found that these comprise largely non-overlapping populations of neurons which send collaterals to unique sets of additional thalamic and brainstem regions, creating distinct, somewhat overlapping, output channels. We found that neither optogenetic stimulation of superior colliculus nor reticular formation output channels attenuated hippocampal seizures. In contrast, on-demand stimulation of fastigial neurons targeting the central lateral nucleus robustly inhibited seizures. Our results indicate that fastigial control of hippocampal seizures does not require simultaneous modulation of many fastigial output channels. Rather, selective modulation of the fastigial output channel to the central lateral thalamus, specifically, is sufficient for seizure control. This may provide a means for more selective therapeutic interventions, which provide seizure control while minimizing unwanted side effects. More broadly, our data highlight the concept of specific cerebellar output channels, whereby discrete cerebellar nucleus neurons project to specific aggregates of downstream targets, with distinct functional outcomes.


2021 ◽  
Author(s):  
Atsushi Yoshida ◽  
Misaki Inoue ◽  
Fumihiko Sato ◽  
Yayoi Morita ◽  
Yumi Tsutsumi ◽  
...  

Abstract The supratrigeminal nucleus (Su5) is a key structure for controlling jaw-movements since it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projection to the trigeminal motor nucleus (Mo5). However, the central projection and regulation of JCMS proprioceptive sensation have not been fully understood. Therefore, we aimed to reveal the efferents and afferents of the Su5 by means of neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sent contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 received bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5 receiving JCMS proprioceptive sensation has efferent and afferent connections with multiple brain regions, which are involved in emotional and autonomic functions as well as orofacial motor functions.


2021 ◽  
Author(s):  
Erin Lynch ◽  
Bowen Richard Dempsey ◽  
Eloise Monteiro ◽  
Anita J Turner ◽  
Christine Saleeba ◽  
...  

The ability to discriminate competing, ecologically relevant stimuli, and initiate contextually appropriate behaviors, is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting and attention, which often involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in conscious rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses occurred in the absence of detectable aversion or fear and persisted under urethane anesthesia, indicating independence from emotional stress. Moreover, autonomic responses were replicated by selective stimulation of dSC inputs to the medullary reticular formation, a major target of dSC motor efferents, This disynaptic pathway represent a likely substrate for autonomic components of orienting.


2021 ◽  
Author(s):  
Jeremy W. Chopek ◽  
Ying Zhang ◽  
Robert M Brownstone

ABSTRACTGlutamatergic reticulospinal neurons in the gigantocellular reticular nucleus (GRN) of the medullary reticular formation can function as command neurons, transmitting motor commands to spinal cord circuits. Recent advances in our understanding of this neuron-dense region have been facilitated by the discovery of expression of the transcriptional regulator, Chx10, in excitatory reticulospinal neurons. Here, we address the capacity of local circuitry in the GRN to contribute to reticulospinal output. We define two sub-populations of Chx10-expressing neurons in this region, based on distinct electrophysiological properties and somata size (small and large), and show that these correspond to local interneurons and reticulospinal neurons, respectively. Using focal release of caged-glutamate combined with patch clamp recordings, we demonstrated that Chx10 neurons form microcircuits in which the Chx10 interneurons project to and facilitate the firing of Chx10 reticulospinal neurons. We discuss the implications of these microcircuits in terms of movement selection.SIGNIFICANCE STATEMENTReticulospinal neurons in the medullary reticular formation play a key role in movement. The transcriptional regulator Chx10 defines a population of glutamatergic neurons in this region, a proportion of which have been shown to be involved in stopping, steering, and modulating locomotion. While it has been shown that these neurons integrate descending inputs, we asked whether local processing also ultimately contributes to reticulospinal outputs. Here, we define Chx10-expressing medullary reticular formation interneurons and reticulospinal neurons, and demonstrate how the former modulate the output of the latter. The results shed light on the internal organization and microcircuit formation of reticular formation neurons.


2019 ◽  
Vol 122 (6) ◽  
pp. 2601-2613
Author(s):  
Brandon K. LaPallo ◽  
Andrea Giorgi ◽  
Marie-Claude Perreault

Activation of contralateral muscles by supraspinal neurons, or crossed activation, is critical for bilateral coordination. Studies in mammals have focused on the neural circuits that mediate cross activation of limb muscles, but the neural circuits involved in crossed activation of trunk muscles are still poorly understood. In this study, we characterized functional connections between reticulospinal (RS) neurons in the medial and lateral regions of the medullary reticular formation (medMRF and latMRF) and contralateral trunk motoneurons (MNs) in the thoracic cord (T7 and T10 segments). To do this, we combined electrical microstimulation of the medMRF and latMRF and calcium imaging from single cells in an ex vivo brain stem-spinal cord preparation of neonatal mice. Our findings substantiate two spatially distinct RS pathways to contralateral trunk MNs. Both pathways originate in the latMRF and are midline crossing, one at the level of the spinal cord via excitatory descending commissural interneurons (reticulo-commissural pathway) and the other at the level of the brain stem (crossed RS pathway). Activation of these RS pathways may enable different patterns of bilateral trunk coordination. Possible implications for recovery of trunk function after stroke or spinal cord injury are discussed. NEW & NOTEWORTHY We identify two spatially distinct reticulospinal pathways for crossed activation of trunk motoneurons. Both pathways cross the midline, one at the level of the brain stem and the other at the level of the spinal cord via excitatory commissural interneurons. Jointly, these pathways provide new opportunities for repair interventions aimed at recovering trunk functions after stroke or spinal cord injury.


2019 ◽  
Vol 78 (9) ◽  
pp. 765-779 ◽  
Author(s):  
Hannah C Kinney ◽  
Robin L Haynes

Abstract The sudden infant death syndrome (SIDS) is the leading cause of postneonatal infant mortality in the United States today, with an overall rate of 0.39/1000 live births. It is defined as the sudden and unexpected death of an infant <12 months of age that remains unexplained after a complete autopsy, death scene investigation, and review of the clinical history. The serotonin brainstem hypothesis has been a leading hypothesis for SIDS over the last 2 decades. Our laboratory has studied this hypothesis over time with a variety of tissue techniques, including tissue receptor autoradiography, high performance liquid chromatography, Western blot analysis, immunocytochemistry, and proteomics. The purpose of this article is to review the progress in our laboratory toward supporting this hypothesis. We conclude that an important subset of SIDS infants has serotonergic abnormalities resulting from a “core lesion” in the medullary reticular formation comprised of nuclei that contain serotonin neurons. This lesion could lead to a failure of protective brainstem responses to homeostatic challenges during sleep in a critical developmental period which cause sleep-related sudden death.


2019 ◽  
Author(s):  
Adele V Bubnys ◽  
Hagar Kandel ◽  
Lee-Ming Kow ◽  
Donald W Pfaff ◽  
Inna Tabansky

AbstractThe reticulospinal system is an evolutionarily conserved pathway among vertebrates that relays locomotor control signals from the hindbrain to the spinal cord. Recent studies have identified specific hindbrain cell types that participate in this circuit, including Chx10+neurons of the medullary reticular formation, which project to the spinal cord and are active during periods of locomotion. To create a system in which reticulospinal neurons communicate with spinal motor effectors, we have constructed anin vitromodel using two purified excitatory neuronal subtypes: HB9+spinal motor neurons and Chx10+hindbrain neurons. Cultured separately, these neurons exhibit cell type-specific patterns of activity; the Chx10+cultures developed regular, synchronized bursts of activity that recruited neurons across the entire culture, whereas motor neuron activity consisted of an irregular pattern. A combination of the two subtypes produced cultures in which Chx10+neurons recruited the motor neurons into synchronized network bursts, which were dependent on AMPA receptors. In addition to demonstrating that the activity ofin vitronetworks can depend on the developmental identity of their constituent neurons, we provide a new model with genetically specified nerve cell types to study the activity of a reticulospinal circuit.Significance statementModels of the brain that use cultured neurons are usually comprised of a complex mixture of different kinds of cells, making it hard to determine how each cell type contributes to the overall pattern of activity. We made a simplified culture containing two cell types known to form a reticulospinal circuitin vivo. While in isolated cultures, each cell type had a distinct pattern of activity, in coculture the activity of one cell type came to dominate, indicating that the patterns observed in complex neuronal cultures arise in part from the distinctive properties of the constituent neurons.


2018 ◽  
Vol 120 (6) ◽  
pp. 3140-3154 ◽  
Author(s):  
Daniel B. Yaeger ◽  
Emma J. Coddington

Neurons in the medullary reticular formation are involved in the control of postural and locomotor behaviors in all vertebrates. Reticulospinal neurons in this brain region provide one of the major descending projections to the spinal cord. Although neurons in the newt medullary reticular formation have been extensively studied using in vivo extracellular recordings, little is known of their intrinsic biophysical properties or of the underlying circuitry of this region. Using whole cell patch-clamp recordings in brain slices containing the rostromedial reticular formation from adult male newts, we observed spontaneous miniature outward currents (SMOCs) in ~2/3 of neurons. Although SMOCs superficially resembled inhibitory postsynaptic currents (IPSCs), they had slower risetimes and decay times than spontaneous IPSCs. SMOCs required intracellular Ca2+ release from ryanodine receptors and were also dependent on the influx of extracellular Ca2+. SMOCs were unaffected by apamin but were partially blocked by iberiotoxin and charybdotoxin, indicating that SMOCs were mediated by big-conductance Ca2+-activated K+ channels. Application of the sarco/endoplasmic Ca2+ ATPase inhibitor cyclopiazonic acid blocked the generation of SMOCs and also increased neural excitability. Neurons with SMOCs had significantly broader action potentials, slower membrane time constants, and higher input resistance than neurons without SMOCs. Thus, SMOCs may serve as a mechanism to regulate action potential threshold in a majority of neurons within the newt medullary reticular formation. NEW & NOTEWORTHY The medullary reticular formation exerts a powerful influence on sensorimotor integration and subsequent motor behavior, yet little is known about the neurons involved. In this study, we identify a transient potassium current that regulates action potential threshold in a majority of medullary reticular neurons.


Sign in / Sign up

Export Citation Format

Share Document