scholarly journals Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates.

1994 ◽  
Vol 269 (44) ◽  
pp. 27179-27182
Author(s):  
C Des Rosiers ◽  
C A Fernandez ◽  
F David ◽  
H Brunengraber
1995 ◽  
Vol 270 (17) ◽  
pp. 10027-10036 ◽  
Author(s):  
Christine Des Rosiers ◽  
Lorella Di Donato ◽  
Blandine Comte ◽  
Annick Laplante ◽  
Caroline Marcoux ◽  
...  

1975 ◽  
Vol 150 (1) ◽  
pp. 105-111 ◽  
Author(s):  
P H Sugden ◽  
E A Newsholme

1. The activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenases were measured in nervous tissue from different animals in an attempt to provide more information about the citric acid cycle in this tissue. In higher animals the activities of citrate synthase are greater than the sum of activities of the isocitrate dehydrogenases, whereas they are similar in nervous tissues from the lower animals. This suggests that in higher animals the isocitrate dehydrogenase reaction is far-removed from equilibrium. If it is assumed that isocitrate dehydrogenase activities provide an indication of the maximum flux through the citric acid cycle, the maximum glycolytic capacity in nervous tissue is considerably greater than that of the cycle. This suggest that glycolysis can provide energy in excess of the aerobic capacity of the tissue. 2. The activities of glutamate dehydrogenase are high in most nervous tissues and the activities of aspartate aminotransferase are high in all nervous tissue investigated. However, the activities of alanine aminotransferase are low in all tissues except the ganglia of the waterbug and cockroach. In these insect tissues, anaerobic glycolysis may result in the formation of alanine rather than lactate.


1976 ◽  
Vol 154 (3) ◽  
pp. 689-700 ◽  
Author(s):  
P R. Alp ◽  
E A. Newsholme ◽  
V A. Zammit

1. The activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase were measured in muscles from a large number of animals, in order to provide some indication of the importance of the citric acid cycle in these muscles. According to the differences in enzyme activities, the muscles can be divided into three classes. First, in a number of both vertebrate and invertebrate muscles, the activities of all three enzymes are very low. It is suggested that either the muscles use energy at a very low rate or they rely largely on anaerobic glycolysis for higher rates of energy formation. Second, most insect flight muscles contain high activities of citrate synthase and NAD+-linked isocitrate dehydrogenase, but the activities of the NADP+-linked enzyme are very low. The high activities indicate the dependence of insect flight on energy generated via the citric acid cycle. The flight muscles of the beetles investigated contain high activities of both isocitrate dehydrogenases. Third, other muscles of both vertebrates and invertebrates contain high activities of citrate synthase and NADP+-liniked isocitrate dehydrogenase. Many, if not all, of these muscles are capable of sustained periods of mechanical activity (e.g. heart muscle, pectoral muscles of some birds). Consequently, to support this activity fuel must be supplied continually to the muscle via the circulatory system which, in most animals, also transports oxygen so that energy can be generated by complete oxidation of the fuel. It is suggested that the low activities of NAD+-linked isocitrate dehydrogenase in these muscles may be involved in oxidation of isocitrate in the cycle when the muscles are at rest. 2. A comparison of the maximal activities of the enzymes with the maximal flux through the cycle suggests that, in insect flight muscle, NAD+-linked isocitrate dehydrogenase catalyses a non-equilibrium reaction and citrate synthease catalyses a near-equilibrium reaction. In other muscles, the enzyme-activity data suggest that both citrate synthase and the isocitrate dehydrogenase reactions are near-equilibrium.


2008 ◽  
Vol 283 (32) ◽  
pp. 21988-21996 ◽  
Author(s):  
Lili Yang ◽  
Takhar Kasumov ◽  
Rajan S. Kombu ◽  
Shu-Han Zhu ◽  
Andrea V. Cendrowski ◽  
...  

1970 ◽  
Vol 100 (7) ◽  
pp. 749-756 ◽  
Author(s):  
T. R. Shearer ◽  
J. W. Suttie

Sign in / Sign up

Export Citation Format

Share Document