isotopomer analysis
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 1)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 881 ◽  
Author(s):  
Yogi Umbarawan ◽  
Ryo Kawakami ◽  
Mas Rizky A. A. Syamsunarno ◽  
Hideru Obinata ◽  
Aiko Yamaguchi ◽  
...  

Cardiac dysfunction is induced by multifactorial mechanisms in diabetes. Deranged fatty acid (FA) utilization, known as lipotoxicity, has long been postulated as one of the upstream events in the development of diabetic cardiomyopathy. CD36, a transmembrane glycoprotein, plays a major role in FA uptake in the heart. CD36 knockout (CD36KO) hearts exhibit reduced rates of FA transport with marked enhancement of glucose use. In this study, we explore whether reduced FA use by CD36 ablation suppresses the development of streptozotocin (STZ)-induced diabetic cardiomyopathy. We found that cardiac contractile dysfunction had deteriorated 16 weeks after STZ treatment in CD36KO mice. Although accelerated glucose uptake was not reduced in CD36KO-STZ hearts, the total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. The isotopomer analysis with 13C6-glucose revealed that accelerated glycolysis, estimated by enrichment of 13C2-citrate and 13C2-malate, was markedly suppressed in CD36KO-STZ hearts. Levels of ceramides, which are cardiotoxic lipids, were not elevated in CD36KO-STZ hearts compared to wild-type-STZ ones. Furthermore, increased energy demand by transverse aortic constriction resulted in synergistic exacerbation of contractile dysfunction in CD36KO-STZ mice. These findings suggest that CD36KO-STZ hearts are energetically compromised by reduced FA use and suppressed glycolysis; therefore, the limitation of FA utilization is detrimental to cardiac energetics in this model of diabetic cardiomyopathy.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Mukundan Ragavan ◽  
Mengchen Li ◽  
Anthony G. Giacalone ◽  
Charles E. Wood ◽  
Maureen Keller-Wood ◽  
...  

Ovine models of pregnancy have been used extensively to study maternal–fetal interactions and have provided considerable insight into nutrient transfer to the fetus. Ovine models have also been utilized to study congenital heart diseases. In this work, we demonstrate a comprehensive assessment of heart function and metabolism using a perinatal model of heart function with the addition of a [U-13C]glucose as tracer to study central energy metabolism. Using nuclear magnetic resonance spectroscopy, and metabolic modelling, we estimate myocardial citric acid cycle turnover (normalized for oxygen consumption), substrate selection, and anaplerotic fluxes. This methodology can be applied to studying acute and chronic effects of hormonal signaling in future studies.


Author(s):  
Francisco X. Carvalho ◽  
Bárbara Guerra-Carvalho ◽  
Ivana Jarak ◽  
Rui A. Carvalho

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jared S. Mackenzie ◽  
Dirk A. Lamprecht ◽  
Rukaya Asmal ◽  
John H. Adamson ◽  
Khushboo Borah ◽  
...  

AbstractThe approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using 13C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis.


Chemosphere ◽  
2020 ◽  
Vol 251 ◽  
pp. 126357
Author(s):  
Xianwang Kong ◽  
Shihao Ying ◽  
Liangcheng Yang ◽  
Yicong Xin ◽  
Zhen Cai ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Khushboo Borah ◽  
Karina do Carmo de Vasconcelos Girardi ◽  
Tom A. Mendum ◽  
Leticia Miranda Santos Lery ◽  
Dany J. V. Beste ◽  
...  

ABSTRACT New approaches are needed to control leprosy, but understanding of the biology of the causative agent Mycobacterium leprae remains rudimentary, principally because the pathogen cannot be grown in axenic culture. Here, we applied 13C isotopomer analysis to measure carbon metabolism of M. leprae in its primary host cell, the Schwann cell. We compared the results of this analysis with those of a related pathogen, Mycobacterium tuberculosis, growing in its primary host cell, the macrophage. Using 13C isotopomer analysis with glucose as the tracer, we show that whereas M. tuberculosis imports most of its amino acids directly from the host macrophage, M. leprae utilizes host glucose pools as the carbon source to biosynthesize the majority of its amino acids. Our analysis highlights the anaplerotic enzyme phosphoenolpyruvate carboxylase required for this intracellular diet of M. leprae, identifying this enzyme as a potential antileprosy drug target. IMPORTANCE Leprosy remains a major problem in the world today, particularly affecting the poorest and most disadvantaged sections of society in the least developed countries of the world. The long-term aim of research is to develop new treatments and vaccines, and these aims are currently hampered by our inability to grow the pathogen in axenic culture. In this study, we probed the metabolism of M. leprae while it is surviving and replicating inside its primary host cell, the Schwann cell, and compared it to a related pathogen, M. tuberculosis, replicating in macrophages. Our analysis revealed that unlike M. tuberculosis, M. leprae utilized host glucose as a carbon source and that it biosynthesized its own amino acids, rather than importing them from its host cell. We demonstrated that the enzyme phosphoenolpyruvate carboxylase plays a crucial role in glucose catabolism in M. leprae. Our findings provide the first metabolic signature of M. leprae in the host Schwann cell and identify novel avenues for the development of antileprosy drugs.


Sign in / Sign up

Export Citation Format

Share Document