scholarly journals The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3.

1981 ◽  
Vol 256 (21) ◽  
pp. 11203-11208 ◽  
Author(s):  
S.N. Murthy ◽  
T. Liu ◽  
R.K. Kaul ◽  
H. Köhler ◽  
T.L. Steck
2006 ◽  
Vol 400 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Haiyan Chu ◽  
Philip S. Low

Previous work has shown that GAPDH (glyceraldehyde-3-phosphate dehydrogenase), aldolase, PFK (phosphofructokinase), PK (pyruvate kinase) and LDH (lactate dehydrogenase) assemble into a GE (glycolytic enzyme) complex on the inner surface of the human erythrocyte membrane. In an effort to define the molecular architecture of this complex, we have undertaken to localize the binding sites of these enzymes more accurately. We report that: (i) a major aldolase-binding site on the erythrocyte membrane is located within N-terminal residues 1–23 of band 3 and that both consensus sequences D6DYED10 and E19EYED23 are necessary to form a single enzyme-binding site; (ii) GAPDH has two tandem binding sites on band 3, located in residues 1–11 and residues 12–23 respectively; (iii) a PFK-binding site resides between residues 12 and 23 of band 3; (iv) no GEs bind to the third consensus sequence (residues D902EYDE906) at the C-terminus of band 3; and (v) the LDH- and PK-binding sites on the erythrocyte membrane do not reside on band 3. Taken together, these results argue that band 3 provides a nucleation site for the GE complex on the human erythrocyte membrane and that other components near band 3 must also participate in organizing the enzyme complex.


1996 ◽  
Vol 314 (3) ◽  
pp. 881-887 ◽  
Author(s):  
Yehudit ZIPSER ◽  
Nechama S. KOSOWER

The anion-exchange band 3 protein is the main erythrocyte protein that is phosphorylated by tyrosine kinase. To study the regulation of band 3 phosphorylation, we examined phosphotyrosine phosphatase (PTP) activity in the human erythrocyte. We show that the human erythrocyte membrane contains a band 3-associated neutral PTP which is activated by Mg2+ and inhibited by Mn2+ and vanadate. The PTP is active in the intact cell and in the isolated membrane. A major fraction of the PTP is tightly bound to the membrane and can be extracted from it by Triton X-100; a minor part is associated with the Triton X-100-insoluble cytoskeleton. The behaviour of the PTP parallels that of band 3, the major fraction of which is extractable by detergents with a minor fraction being anchored to the cytoskeleton. Moreover, band 3 is co-precipitated when the PTP is immunoprecipitated from solubilized membranes, and PTP is co-precipitated when band 3 is immunoprecipitated. The PTP appears to be related to PTP1B (identified using an antibody to an epitope in its catalytic domain and by molecular mass). The system described here has a unique advantage for PTP research, since it allows the study of the interaction of a PTP with an endogenous physiological substrate that is present in substantial amounts in the cell membrane. The membrane-bound, band 3-associated, PTP may play a role in band 3 function in the erythrocyte and in other cells which have proteins analogous to band 3.


1997 ◽  
Vol 1325 (2) ◽  
pp. 226-234 ◽  
Author(s):  
Bogdan von Rückmann ◽  
Thomas Jöns ◽  
Frank Dölle ◽  
Detlev Drenckhahn ◽  
Dieter Schubert

Biochemistry ◽  
2012 ◽  
Vol 51 (34) ◽  
pp. 6838-6846 ◽  
Author(s):  
Jesse L. Grey ◽  
Gayani C. Kodippili ◽  
Katya Simon ◽  
Philip S. Low

Sign in / Sign up

Export Citation Format

Share Document