binding sites
Recently Published Documents





2022 ◽  
Evianne Rovers ◽  
Matthieu Schapira

Proximity pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target protein. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 188 kinases, 42 phosphatases, 26 deubiquitinases, 9 methyltransferases, 7 acetyltransferases, 7 glycosyltransferases, 4 deacetylases, 3 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential, and reveals novel opportunities to pharmacologically rewire molecular circuitries.

ChemMedChem ◽  
2022 ◽  
Anne Zimmermann ◽  
Oanh Vu ◽  
Antje Brüser ◽  
Gregory Sliwoski ◽  
Lawrence J. Marnett ◽  

2022 ◽  
Vol 8 (2) ◽  
Yana Bromberg ◽  
Ariel A. Aptekmann ◽  
Yannick Mahlich ◽  
Linda Cook ◽  
Stefan Senn ◽  

Computational exploration of similarities among metal-binding protein structural motifs elucidates the origins of life.

Francesca Torrini ◽  
Laura Caponi ◽  
Andrea Bertolini ◽  
Pasquale Palladino ◽  
Francesca Cipolli ◽  

AbstractAn original biomimetic enzyme-linked immunoassay (BELISA) to target the small peptide hormone gonadorelin is presented. This peptide has been recently listed among the substances banned in sports by the World Antidoping Agency (WADA) since its misuse by male athletes triggers testosterone increase. Hence, in response to this emerging issue in anti-doping controls, we proposed BELISA which involves the growth of a polynorepinephrine (PNE)–based molecularly imprinted polymer (MIP) directly on microwells. PNE, a polydopamine (PDA) analog, has recently displayed impressive performances when it was exploited for MIP preparation, giving even better results than PDA. Gonadorelin quantification was accomplished via a colorimetric indirect competitive bioassay involving the competition between biotinylated gonadorelin linked to the signal reporter and the unlabeled analyte. These compete for the same MIP binding sites resulting in an inverse correlation between gonadorelin concentration and the output color signal (λ = 450 nm). A detection limit of 277 pmol L−1 was achieved with very good reproducibility in standard solutions (avCV% = 4.07%) and in urine samples (avCV% = 5.24%). The selectivity of the assay resulted adequate for biological specimens and non-specific control peptides. In addition, the analytical figures of merit were successfully validated by mass spectrometry, the reference anti-doping benchtop platform for the analyte. BELISA was aimed to open real perspectives for PNE-based MIPs as alternatives to antibodies, especially when the target analyte is a poorly or non-immunogenic small molecule, such as gonadorelin. Graphical abstract

2022 ◽  
Agustin Carbajal ◽  
Irma Gryniuk ◽  
Rodrigo de Castro ◽  
Roberto Pezza

Chromatin-based mechanisms regulating developmental transitions during meiosis are fundamental but understudied aspects of male gametogenesis. Indeed, chromatin undergoes extensive remodeling dur-ing meiosis, leading to specific patterns of gene expression and chromosome organization, which ulti-mately controls fundamental meiotic processes such as recombination and homologous chromosome associations. Recent game-changing advances have been made by analysis of chromatin binding sites of meiotic specific proteins genome-wide in mouse spermatocytes. However, further progress is still highly dependent on the reliable isolation of sufficient quantities of spermatocytes at specific stages of prophase I. Here, we describe a combination of methodologies adapted for rapid and reliable isolation of synchronized fixed mouse spermatocytes. We show that chromatin isolated from these cells can be used to study chromatin binding sites by ChIP-seq. High quality data we obtained from INO80 ChIP-seq in zygotene cells was used for functional analysis of chromatin binding sites.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 453
Jiayi Yuan ◽  
Chen Jiang ◽  
Junmei Wang ◽  
Chih-Jung Chen ◽  
Yixuan Hao ◽  

Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-β-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future.

2022 ◽  
Vol 23 (2) ◽  
pp. 762
Kamila Dilimulati ◽  
Misaki Orita ◽  
Yoshiki Yonahara ◽  
Fabiana Lica Imai ◽  
Naoto Yonezawa

The species-selective interaction between sperm and egg at the beginning of mammalian fertilisation is partly mediated by a transparent envelope called the zona pellucida (ZP). The ZP is composed of three or four glycoproteins (ZP1–ZP4). The functions of the three proteins present in mice (ZP1–ZP3) have been extensively studied. However, the biological role of ZP4, which was found in all other mammals studied so far, has remained largely unknown. Previously, by developing a solid support assay system, we showed that ZP4 exhibits sperm-binding activity in bovines and the N-terminal domain of bovine ZP4 (bZP4 ZP-N1 domain) is a sperm-binding region. Here, we show that bovine sperm bind to the bZP4 ZP-N1 domain in a species-selective manner and that N-glycosylation is not required for sperm-binding activity. Moreover, we identified three sites involved in sperm binding (site I: from Gln-41 to Pro-46, site II: from Leu-65 to Ser-68 and site III: from Thr-108 to Ile-123) in the bZP4 ZP-N1 domain using chimeric bovine/porcine and bovine/human ZP4 recombinant proteins. These results provide in vitro experimental evidence for the role of the bZP4 ZP-N1 domain in mediating sperm binding to the ZP.

eLife ◽  
2022 ◽  
Vol 11 ◽  
Kaitlyn Tsai ◽  
Vanja Stojković ◽  
Lianet Noda-Garcia ◽  
Iris D Young ◽  
Alexander G Myasnikov ◽  

Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.

Sign in / Sign up

Export Citation Format

Share Document