triton x
Recently Published Documents


TOTAL DOCUMENTS

4049
(FIVE YEARS 379)

H-INDEX

108
(FIVE YEARS 8)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. R. Abbas ◽  
R. T. Khan ◽  
S. Shafique ◽  
S. Mumtaz ◽  
A. A. Khan ◽  
...  

Abstract By applying the in-silico method, resveratrol was docked on those proteins which are responsible for bone loss. The Molecular docking data between the resveratrol and Receptor activator of nuclear factor-kappa-Β ligand [RANKL] receptors proved that resveratrol binds tightly to the receptors, showed the highest binding affinities of −6.9, −7.6, −7.1, −6.9, −6.7, and −7.1 kcal/mol. According to in-vitro data, Resveratrol reduced the osteoclasts after treating Marrow-Derived Macrophages [BMM] with Macrophage colony-stimulating factor [MCSF] 20ng / ml and RANKL 50ng / ml, with different concentrations of resveratrol (2.5, 10 μg / ml) For 7 days, the cells were treated with MCSF (20 ng / ml) and RANKL (40 ng / ml) together with concentrated trimethyl ether and resveratrol (2.5, 10 μg / ml) within 12 hours. Which, not affect cell survival. After fixing osteoclast cells with formaldehyde fixative on glass coverslip followed by incubation with 0.1% Triton X-100 in PBS for 5 min and after that stain with rhodamine phalloidin staining for actin and Hoechst for nuclei. Fluorescence microscopy was performed to see the distribution of filaments actin [F.actin]. Finally, resveratrol reduced the actin ring formation. Resveratrol is the best bioactive compound for drug preparation against bone loss.


2022 ◽  
Vol 23 (2) ◽  
pp. 869
Author(s):  
Negin Gooran ◽  
Bo Kyeong Yoon ◽  
Joshua A. Jackman

Triton X-100 (TX-100) is a widely used detergent to prevent viral contamination of manufactured biologicals and biopharmaceuticals, and acts by disrupting membrane-enveloped virus particles. However, environmental concerns about ecotoxic byproducts are leading to TX-100 phase out and there is an outstanding need to identify functionally equivalent detergents that can potentially replace TX-100. To date, a few detergent candidates have been identified based on viral inactivation studies, while direct mechanistic comparison of TX-100 and potential replacements from a biophysical interaction perspective is warranted. Herein, we employed a supported lipid bilayer (SLB) platform to comparatively evaluate the membrane-disruptive properties of TX-100 and a potential replacement, Simulsol SL 11W (SL-11W), and identified key mechanistic differences in terms of how the two detergents interact with phospholipid membranes. Quartz crystal microbalance-dissipation (QCM-D) measurements revealed that TX-100 was more potent and induced rapid, irreversible, and complete membrane solubilization, whereas SL-11W caused more gradual, reversible membrane budding and did not induce extensive membrane solubilization. The results further demonstrated that TX-100 and SL-11W both exhibit concentration-dependent interaction behaviors and were only active at or above their respective critical micelle concentration (CMC) values. Collectively, our findings demonstrate that TX-100 and SL-11W have distinct membrane-disruptive effects in terms of potency, mechanism of action, and interaction kinetics, and the SLB platform approach can support the development of biophysical assays to efficiently test potential TX-100 replacements.


2022 ◽  
Vol 31 (2) ◽  
pp. 143-151
Author(s):  
- Kamdem ◽  
Nehemie Tchinda Donfagsiteli ◽  
Njoueretou Mfondi Mache ◽  
Carine Temegne Nono ◽  
Rodrigue Goimasse ◽  
...  

Disinfected mature seed embryos of Picralima nitida, were cultured in MS medium supplemented with different concentrations and combinations of 2,4-D, BAP and NAA to determine an efficient protocol for in vitro propagation. Nine culture media made of combination of different components were used in a factorial design with three replications. Results showed up to 80 ± 4% disinfection rate with combination of triton x- 100 (0.2%) and sodium hypochlorite (30%). Embryo germination was highest on control medium. Rooting was higher (2±1 roots per embryo) after 4 weeks on control medium and on BAP supplemented medium at 0.8 μM while the longest root (1.5±0.5 cm) was observed on 2,4-D supplemented medium at 1.8 μM. Black soil was suitable for leaf formation (4 ± 2 leaves) and shoot elongation (2±1 cm) after 8 weeks in acclimatisation. These results show efficient disinfection, regeneration and acclimatisation of Picralima nitida. Plant Tissue Cult. & Biotech. 31(2): 143-151, 2021 (December)


2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Xinling He ◽  
Siqi Jin ◽  
Wei Fan ◽  
Bing Fan

The prevention and treatment of oral diseases is more difficult in diabetic patients with poorly controlled blood glucose levels. This study aims to explore an effective, low-cytotoxicity medication for root canal treatment in diabetic patients. The antibacterial effect of the combination of Triton X-100 (TX-100) and metformin (Met) on Enterococcus faecalis (E. faecalis) was evaluated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration required to kill 99% bacteria (MBC99) and by conducting dynamic time-killing assays. While the antibiofilm activity was measured by crystal violet (CV) assay, field emission scanning electron microscope (FE-SEM), confocal laser scanning microscope (CLSM) and colony-forming unit (CFU) counting assays. The expression of relative genes was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), and the cytotoxicity of the new combination on MC3T3-E1 cell was also tested. Results showed that the antibacterial and antibiofilm activities of Met could be significantly enhanced by very low concentrations of TX-100 in both normal and high-glucose conditions, with a much lower cytotoxicity than 2% chlorhexidine (CHX). Thus, the TX-100 + Met combination may be developed as a promising and effective root canal disinfectant for patients with diabetes.


Author(s):  
Anita A. Mehta ◽  
Purav Patel ◽  
Vandana R. Thakur ◽  
Jayesh V. Beladiya

This study was designed to assess the effect of soya phosphatidylcholine (SPC) against ischemia/reperfusion (I/R) injury and the possible underlying mechanism using experimental and computational studies. I/R injury was induced by global ischemia for 30 min followed by reperfusion for 120 min. The perfusion of the SPC was performed for 10 min before inducing global ischemia. In the mechanistic study, the involvement of specific cellular pathways was identified using various inhibitors such as ATP-dependent potassium channel (KATP) inhibitor (glibenclamide), protein kinase C (PKC) inhibitor (chelerythrine), non-selective nitric oxide synthase inhibitor (L-NAME), and endothelium remover (Triton X-100). The computational study of various ligands was performed on toll-like receptor 4 (TLR4) protein using AutoDock version 4.0. SPC (100 μM) significantly decreased the levels of cardiac damage markers and %infarction compared with the vehicle control (VC). Furthermore, cardiodynamics (indices of left ventricular contraction (dp/dtmax), indices of left ventricular relaxation (dp/dtmin), coronary flow, and antioxidant enzyme levels were significantly improved as compared with VC. This protective effect was attenuated by glibenclamide, chelerythrine, and Triton X-100, but it was not attenuated by L-NAME. The computational study showed a significant bonding affinity of SPC to the TLR4-MD2 complex. Thus, SPC reduced myocardial I/R injury in isolated perfused rat hearts, which might be governed by the KATP channel, PKC, endothelium response, and TLR4-MyD88 signaling pathway.


Author(s):  
Rigaud Sébastien ◽  
Ana Cristina Martinez Maciel ◽  
Tristan Lombard ◽  
Sylvie Grugeon ◽  
Pierre Tran-Van ◽  
...  

Abstract With the aim of establishing a data simultaneous comparison, the Principal Component Analysis (PCA) statistical tool was applied to LiNi0.6Mn0.2Co0.2O2/graphite Li-ion cells electrolyte’s decomposition products detected by UHPLC-ESI-HRMS. Herein, we illustrate how the chemometric tool associated with mass spectrometry data can be relevant to provide information about the presence of unusual molecules. Indeed, pristine Triton X-100 surfactant molecules used in electrode elaboration process were detected after impregnation stage. However, as they chemically react and oxidize at a potential lower than 4.5V vs. Li/Li+, only surfactant derivatives and classical ageing molecules were observed, respectively, after storage and cycling stages at 55°C, leading to a triangle-type correlation circle. On the other hand, global schemes of LiPF6-based electrolyte degradation pathways were elaborated from a comparative study with literature to help interpret results in future electrolyte ageing studies.


2021 ◽  
pp. 088532822110543
Author(s):  
Nisa İrem Büyük ◽  
Kardelen Tüfekçi ◽  
Alev Cumbul ◽  
Erhan Ayşan ◽  
Gamze Torun Köse

This study aimed to generate a novel biomatrix from the decellularized human parathyroid capsule using different methods and to compare the efficiency of decellularization in the means of cell removal, structural integrity and extracellular matrix preservation. The parathyroid capsules, which were carefully dissected from the parathyroid tissue, were randomly divided into four groups and then decellularized using three different protocols: freeze-thaw only, sodium dodecyl sulphate and Triton X-100 treatments after freeze-thawing. Quantitative DNA analysis, agarose gel electrophoresis, sulphated glycosaminoglycan assay, histological analysis, immunohistochemistry and scanning electron microscopy were used to observe the efficiency of parathyroid capsule decellularization and preservation of extracellular matrix components. Considering all the results, it can be said that only freeze-thawing is not an effective method in parathyroid capsule decellularization. When the tissue was treated with a detergent agent in addition to freeze-thawing, the amount of DNA decreased by 90% while sulphated glycosaminoglycan amount maintained 50% compared to untreated tissue. Comparing the effects of the two detergents on the preservation of extracellular matrix such as collagen and sulphated glycosaminoglycan, it was seen that the integrity of tissues treated with Triton X-100 was preserved more than tissues treated with sodium dodecyl sulphate. It is concluded that Triton X-100 treatment with freeze-thawing is the most suitable and effective method for decellularizing the human parathyroid capsule. The biomatrix obtained with this method can be applied in the transplantation of parathyroid tissue and other endocrine tissue types in the body.


Sign in / Sign up

Export Citation Format

Share Document