a minor
Recently Published Documents


TOTAL DOCUMENTS

11045
(FIVE YEARS 3933)

H-INDEX

134
(FIVE YEARS 24)

2022 ◽  
Author(s):  
Cristina Accotto ◽  
David Martínez Poyatos ◽  
Antonio Azor ◽  
Cristina Talavera ◽  
Noreen Joyce Evans ◽  
...  

ABSTRACT Detrital zircon U-Pb geochronology has been widely used to constrain the pre-Carboniferous geography of the European and, to a lesser extent, the Moroccan Variscides. The latter have been generally considered as part of a long-lasting passive margin that characterized northern Gondwana from Ordovician to Devonian time, and was subsequently involved in the late Paleozoic Variscan orogeny. We report detrital zircon ages for three Early to Late Ordovician samples from the Beni Mellala inlier in the northeastern part of the Western Moroccan Meseta in order to discuss the temporal evolution of the sources of sediments in this region. The detrital zircon spectra of these samples, characterized by two main populations with mean ages of 630–610 Ma and 2170–2060 Ma, are typical of Cambrian–Devonian rocks from the Moroccan Variscides and confirm their link to the West African craton. A minor Stenian–Tonian population (peak at ca. 970 Ma) suggests the influence of a distant and intermittent NE African source (Sahara metacraton), which was probably interrupted after Ordovician time. Our data support previous interpretations of the Moroccan Meseta (and the entire northern Moroccan Variscides) as part of the northern Gondwana passive margin. The main sources of these sediments would have been the West African craton in the western regions of the passive margin (Moroc- can Meseta and central European Paleozoic massifs), and the Arabian-Nubian Shield and/or Sahara metacraton in the eastern areas (Libya, Egypt, Jordan, central and NW Iberian zones during Paleozoic time), where the 1.0 Ga detrital zircon population is persistent throughout the Ordovician–Devonian time span.


2022 ◽  
Vol 40 (1) ◽  
pp. 37-48
Author(s):  
Rusli Siti ATIKAH ◽  
◽  
Ai Ling TAN ◽  
Trupp ALEXANDER ◽  
Ka Leong CHONG ◽  
...  

This research examines the rise of a new religious travel segment – the Umrah Do It Yourself (DIY) travellers. While Hajj is the fifth pillar of Islam, Umrah is a minor Muslim pilgrimage that can be undertaken at any time of the year, while still playing a crucial role in the completion of Hajj rituals. In the past, Umrah was managed by an authorised travel agent, who makes all the necessary pilgrimage preparations, from flights to trip itineraries. Recent years have seen an upsurge in travellers who prefer not to utilise the services of such agencies, but instead, to make their own arrangements. The decision by the Saudi Arabian government to launch a Tourist e-Visa in September 2019 has opened a window of opportunity for the legalization of Umrah DIY journeys. The objectives of this study are (i) to explore the travel motives that contribute to the success of the Umrah DIY, and (ii) to explore the factors that support and facilitate the decision for the Umrah DIY. The data were obtained via 20 semi-structured interviews with Umrah DIY travellers. The findings show that flexibility, spirituality, and budget have a crucial impact on travel motivation. Additionally, the findings suggest that information sources, travel quality, companionship/new friendship, and familiarity facilitate the choice of Umrah DIY travel. This research contributes to the growing scholarship on the Muslim travel market beyond Hajj and to studies on independent religious travel. Findings provide an opportunity for suppliers and industry participants to understand the travel motives of this new segment as a basis for producing relevant religious tourism products and services.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Matías Jeldres ◽  
Norman Toro ◽  
Sandra Gallegos ◽  
Pedro Robles ◽  
Iván Salazar ◽  
...  

In areas where access to water for mineral processing is limited, the direct use of seawater in processing has been considered as an alternative to the expense of its desalination. However, efficient flotation of copper sulfides from non-valuable phases is best achieved at a pH > 10.5, and raising the pH of seawater leads to magnesium precipitates that adversely affect subsequent tailings dewatering. Seawater pre-treatment with lime can precipitate the majority of magnesium present, with these solids then being removed by filtration. To understand how such treatment may aid tailings dewatering, treated seawater (TSw) was mixed with raw seawater (Rsw) at different ratios, analyzing the impact on the flocculated settling rate, aggregate size as measured by focused beam reflectance measurement (FBRM), and vane yield stress for two synthetic clay-based tailings. A higher proportion of Tsw (10 mg/L Mg2+) led to larger aggregates and higher settling rates at a fixed dosage, with FBRM suggesting that higher calcium concentrations in Tsw may also favor fines coagulation. The yield stress of concentrated suspensions formed after flocculation decreased with higher proportions of Tsw, a consequence of lower flocculant demand and the reduced presence of precipitates; while the latter is a minor phase by mass, their high impact on rheology reflects a small particle size. Reducing magnesium concentrations in seawater in advance of use in processing offers advantages in the water return from thickening and subsequent underflow transport. However, this may not require complete removal, with blending Tsw and Rsw an option to obtain acceptable industrial performance.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Hyungmin Cho ◽  
Gihoon Yoon ◽  
Minjae Kim ◽  
Jin Yong Park

Membrane fouling is a dominant limit of the membrane separation process. In this research, the optimal water backwashing to solve the membrane fouling problem was investigated in the combined water treatment process of alumina MF and pure polypropylene (PP) beads. Additionally, the influence of membrane shape (tubular or seven channel) was examined, depending on the water backwashing period. The optimal backwashing time (BT) could be 20 s in the combined water treatment process, because of the highest total treated volume (VT) in our BT 6–30 s conditions. The optimal backwashing period (BP) could be 6 min, because of the minimum membrane fouling and the maximum VT in the combined process of tubular alumina MF and PP beads. The resistance of reversible membrane fouling (Rrf) showed a major resistance of total membrane fouling, and that of irreversible membrane fouling (Rif) was a minor one, in the combined process using tubular or seven channel MF. The Rif showed a decreasing trend obviously, as decreasing BT from NBW to 2 min for seven channel MF. It means that the more frequent water backwashing could be more effective to control the membrane fouling, especially irreversible fouling, for seven channel membranes than tubular membranes.


Author(s):  
Xiaomeng Zhang ◽  
Stefan Pirker ◽  
Mahdi Saeedipour

AbstractThe capillary interactions are prominent for a micro-sized particle at the steel—slag interface. In this study, the dynamics of a spherical particle interacting with the steel—slag interface is numerically investigated using the volume of fluid method in combination with the overset grid technique to account for particle motion. The simulations have shown the particle’s separation process at the interface and successfully captured the formation and continuous evolution of a meniscus in the course of particle motion. A sensitivity analysis on the effect of different physical parameters in the steel—slag—particle system is also conducted. The result indicates that the wettability of particle with the slag phase is the main factor affecting particle separation behavior (trapped at the interface or fully separated into slag). Higher interfacial tension of fluid interface and smaller particle size can speed up the particle motion but have less effect on the equilibrium position for particle staying at the interface. In comparison, particle density shows a minor influence when the motion is dominated by the capillary effect. By taking account of the effect of meniscus and capillary forces on a particle, this study provides a more accurate simulation of particle motion in the vicinity of the steel—slag interface and enables further investigation of more complex situations.


2022 ◽  
Vol 10 (1) ◽  
pp. 183
Author(s):  
Tourya Sagouti ◽  
Zineb Belabess ◽  
Naima Rhallabi ◽  
Essaid Ait Barka ◽  
Abdessalem Tahiri ◽  
...  

Citrus stubborn was initially observed in California in 1915 and was later proven as a graft-transmissible disease in 1942. In the field, diseased citrus trees have compressed and stunted appearances, and yield poor-quality fruits with little market value. The disease is caused by Spiroplasma citri, a phloem-restricted pathogenic mollicute, which belongs to the Spiroplasmataceae family (Mollicutes). S. citri has the largest genome of any Mollicutes investigated, with a genome size of roughly 1780 Kbp. It is a helical, motile mollicute that lacks a cell wall and peptidoglycan. Several quick and sensitive molecular-based and immuno-enzymatic pathogen detection technologies are available. Infected weeds are the primary source of transmission to citrus, with only a minor percentage of transmission from infected citrus to citrus. Several phloem-feeding leafhopper species (Cicadellidae, Hemiptera) support the natural spread of S. citri in a persistent, propagative manner. S. citri-free buds are used in new orchard plantings and bud certification, and indexing initiatives have been launched. Further, a quarantine system for newly introduced types has been implemented to limit citrus stubborn disease (CSD). The present state of knowledge about CSD around the world is summarized in this overview, where recent advances in S. citri detection, characterization, control and eradication were highlighted to prevent or limit disease spread through the adoption of best practices.


Author(s):  
Appanah R. Appadu ◽  
Yusuf O. Tijani

In this paper, we obtain the numerical solution of a 1-D generalised Burgers-Huxley equation under specified initial and boundary conditions, considered in three different regimes. The methods are Forward Time Central Space (FTCS) and a non-standard finite difference scheme (NSFD). We showed the schemes satisfy the generic requirements of the finite difference method in solving a particular problem. There are two proposed solutions for this problem and we show that one of the proposed solutions contains a minor error. We present results using FTCS, NSFD, and exact solution as well as show how the profiles differ when the two proposed solutions are used. In this problem, the boundary conditions are obtained from the proposed solutions. Error analysis and convergence tests are performed.


Author(s):  
Ting XIE ◽  
Andrea Orbán ◽  
Xiaodong Xing ◽  
Eliane Luc-Koenig ◽  
Romain Vexiau ◽  
...  

Abstract Ultracold temperatures in dilute quantum gases opened the way to an exquisite control of matter at the quantum level. Here we focus on the control of ultracold atomic collisions using a laser to engineer their interactions at large interatomic distances. We show that the entrance channel of two colliding ultracold atoms can be coupled to a repulsive collisional channel by the laser light so that the overall interaction between the two atoms becomes repulsive: this prevents them to come close together and to undergo inelastic processes, thus protecting the atomic gases from unwanted losses. We illustrate such an optical shielding mechanism with 39K and 133Cs atoms colliding at ultracold temperature (<1 microkelvin). The process is described in the framework of the dressed-state picture and we then solve the resulting stationary coupled Schrödinger equations. The role of spontaneous emission and photoinduced inelastic scattering is also investigated as possible limitations of the shielding efficiency. We predict an almost complete suppression of inelastic collisions over a broad range of Rabi frequencies and detunings from the 39K D2 line of the optical shielding laser, both within the [0, 200 MHz] interval. We found that the polarization of the shielding laser has a minor influence on this efficiency. This proposal could easily be formulated for other bialkali-metal pairs as their long-range interaction are all very similar to each other.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010000
Author(s):  
Priyanka Rai ◽  
Dhiraj Saha

Introduction Lymphatic filariasis causes long term morbidity and hampers the socio-economic status. Apart from the available treatments and medication, control of vector population Culex quinquefasciatus Say through the use of chemical insecticides is a widely applied strategy. However, the unrestrained application of these insecticides over many decades has led to resistance development in the vectors. Methods In order to determine the insecticide susceptibility/resistance status of Cx. quinquefasciatus from two filariasis endemic districts of West Bengal, India, wild mosquito populations were collected and assayed against six different insecticides and presence of L1014F; L1014S kdr mutations in the voltage-gated sodium channel gene was also screened along with the use of synergists to evaluate the role of major detoxifying enzymes in resistance development. Results The collected mosquito populations showed severe resistance to insecticides and the two synergists used–PBO (piperonyl butoxide) and TPP (triphenyl phosphate), were unable to restore the susceptibility status of the vector thereupon pointing towards a minor role of metabolic enzymes. kdr mutations were present in the studied populations in varying percent with higher L1014F frequency indicating its association with the observed resistance to pyrethroids and DDT. This study reports L1014S mutation in Cx. quinquefasciatus for the first time.


2022 ◽  
Vol 12 ◽  
Author(s):  
Dakota L. Pouncey ◽  
Dustyn A. Barnette ◽  
Riley W. Sinnott ◽  
Sarah J. Phillips ◽  
Noah R. Flynn ◽  
...  

Coumadin (R/S-warfarin) anticoagulant therapy is highly efficacious in preventing the formation of blood clots; however, significant inter-individual variations in response risks over or under dosing resulting in adverse bleeding events or ineffective therapy, respectively. Levels of pharmacologically active forms of the drug and metabolites depend on a diversity of metabolic pathways. Cytochromes P450 play a major role in oxidizing R- and S-warfarin to 6-, 7-, 8-, 10-, and 4′-hydroxywarfarin, and warfarin alcohols form through a minor metabolic pathway involving reduction at the C11 position. We hypothesized that due to structural similarities with warfarin, hydroxywarfarins undergo reduction, possibly impacting their pharmacological activity and elimination. We modeled reduction reactions and carried out experimental steady-state reactions with human liver cytosol for conversion of rac-6-, 7-, 8-, 4′-hydroxywarfarin and 10-hydroxywarfarin isomers to the corresponding alcohols. The modeling correctly predicted the more efficient reduction of 10-hydroxywarfarin over warfarin but not the order of the remaining hydroxywarfarins. Experimental studies did not indicate any clear trends in the reduction for rac-hydroxywarfarins or 10-hydroxywarfarin into alcohol 1 and 2. The collective findings indicated the location of the hydroxyl group significantly impacted reduction selectivity among the hydroxywarfarins, as well as the specificity for the resulting metabolites. Based on studies with R- and S-7-hydroxywarfarin, we predicted that all hydroxywarfarin reductions are enantioselective toward R substrates and enantiospecific for S alcohol metabolites. CBR1 and to a lesser extent AKR1C3 reductases are responsible for those reactions. Due to the inefficiency of reactions, only reduction of 10-hydroxywarfarin is likely to be important in clearance of the metabolite. This pathway for 10-hydroxywarfarin may have clinical relevance as well given its anticoagulant activity and capacity to inhibit S-warfarin metabolism.


Sign in / Sign up

Export Citation Format

Share Document