In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy

1999 ◽  
Vol 34 (5) ◽  
pp. 726-730 ◽  
Author(s):  
Heung Bae Kim ◽  
Aimen F. Shaaban ◽  
Ross Milner ◽  
Christian Fichter ◽  
Alan W. Flake
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1275-1275
Author(s):  
William H. Peranteau ◽  
Masayuki Endo ◽  
Obinna O. Adibe ◽  
Aziz Merchant ◽  
Philip Zoltick ◽  
...  

Abstract In utero bone marrow transplantation (IUBMT) induces donor-specific tolerance for postnatal cellular or organ transplantation. Consistent induction of tolerance requires a threshold of mixed hematopoietic chimerism (>1%). CD26 is a peptidase whose inhibition has been demonstrated to influence granulocyte colony-stimulating factor induced mobilization of hematopoietic stem cells and increase homing and engraftment of BM cells in adult transplantation models. We hypothesized that CD26 inhibition would increase the frequency and levels of allogeneic hematopoietic chimerism after IUBMT. Methods: B6 GFP BM was injected intravenously into E14 Balb/c fetal mice at a dose of 20e6 cells/fetus with or without CD26 inhibition with diprotin A. Early kinetic analysis was performed to assess donor cell homing to fetal liver (FL). Peripheral blood (PB) was analyzed up to 20 weeks after birth for donor cell chimerism and multilineage engraftment by flow cytometry. PB was also analyzed for donor cell chimerism at the same time points from Balb/c mice receiving 10e6 CD26 inhibited GFP BM cells coinjected with 10e6 noninhibited congenic B6Ly5.2 BM cells at E14 to assess for an in utero competitive advantage provided by CD26 inhibition. Results: CD26 inhibition increased donor cell homing to the FL at 24, 48 and 96 hours after injection (69.27±8.19 vs 30.21±6.44, 57.20±14.63 vs 36.80±14.20, 46.14±15.79 vs 12.09±7.01; p<0.05 at all time points). The frequency and levels of engraftment at 4 weeks of life were increased in those mice receiving CD26 inhibited BM compared to noninhibited BM (50.0% vs 22.5%; 20.48±14 vs 6.96±8.44, p<0.05). Chimerism was multilineage and maintained at 20 weeks of age (figure 1a) supporting improvement of engraftment at the stem or early progenitor cell level (* p<0.05 comparing chimerism levels between inhibitied and noninhibited cells). The coinjection of CD26 inhibited and noninhibited cells resulted in higher levels of engraftment of inhibited cells at all time points up to 16 weeks of age arguing for a competitive engraftment advantage of early progenitor cells provided by CD26 inhibition (figure 1b). Conclusion: CD26 inhibition of donor BM prior to IUBMT results in an increased efficiency of donor engraftment and higher levels of chimerism. CD26 inhibition offers a potential mechanism to increase the level of engraftment and the rate of donor specific tolerance and may facilitate combined pre and postnatal strategies for cellular and organ transplantation. Figure Figure


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yi-Bin Chen ◽  
Tatsuo Kawai ◽  
Thomas R. Spitzer

The induction of specific tolerance, in order to avoid the detrimental effects of lifelong systemic immunosuppressive therapy after organ transplantation, has been considered the “Holy Grail” of transplantation. Experimentally, tolerance has been achieved through clonal deletion, through costimulatory blockade, through the induction or infusion of regulatory T-cells, and through the establishment of hematopoietic chimerism following donor bone marrow transplantation. The focus of this review is how tolerance has been achieved following combined bone marrow and kidney transplantation. Preclinical models of combined bone marrow and kidney transplantation have shown that tolerance can be achieved through either transient or sustained hematopoietic chimerism. Combined transplants for patients with multiple myeloma have shown that organ tolerance and prolonged disease remissions can be accomplished with such an approach. Similarly, multiple clinical strategies for achieving tolerance in patients without an underlying malignancy have been described, in the context of either transient or durable mixed chimerism or sustained full donor hematopoiesis. To expand the chimerism approach to deceased donor transplants, a delayed tolerance approach, which will involve organ transplantation with conventional immunosuppression followed months later by bone marrow transplantation, has been successful in a primate model. As combined bone marrow and organ transplantation become safer and increasingly successful, the achievement of specific tolerance may become more widely applicable.


1989 ◽  
Vol 169 (2) ◽  
pp. 493-502 ◽  
Author(s):  
Y Sharabi ◽  
D H Sachs

The use of allogeneic bone marrow transplantation as a means of inducing donor-specific tolerance across MHC barriers could provide an immunologically specific conditioning regimen for organ transplantation. However, a major limitation to this approach is the toxicity of whole body irradiation as currently used to abrogate host resistance and permit marrow engraftment. The present study describes methodology for abrogating host resistance and permitting marrow engraftment without lethal irradiation. Our preparative protocol involves administration of anti-CD4 and anti-CD8 mAbs in vivo, 300-rad WBI, 700-rad thymic irradiation, and unmanipulated fully MHC-disparate bone marrow. B10 mice prepared by this regimen developed stable mixed lymphohematopoetic chimerism without any clinical evidence of graft-vs.-host disease. Engraftment was accompanied by induction of specific tolerance to donor skin grafts (B10.D2), while third-party skin grafts (B10.BR) were promptly rejected. Mice treated with the complete regimen without bone marrow transplantation appeared healthy and enjoyed long-term survival. This study therefore demonstrates that stable mixed chimerism with donor-specific tolerance can be induced across an MHC barrier after a nonlethal preparative regimen, without clinical GVHD and without the risk of aplasia.


Sign in / Sign up

Export Citation Format

Share Document