scholarly journals Group of units in a finite ring

2002 ◽  
Vol 170 (2-3) ◽  
pp. 175-183 ◽  
Author(s):  
David Dolz̆an
Keyword(s):  
Author(s):  
Mostafa Amini ◽  
Mohsen Amiri

Let [Formula: see text] be a unitary ring of finite cardinality [Formula: see text], where [Formula: see text] is a prime number and [Formula: see text]. We show that if the group of units of [Formula: see text] has at most one subgroup of order [Formula: see text], then [Formula: see text] where [Formula: see text] is a finite ring of order [Formula: see text] and [Formula: see text] is a ring of cardinality [Formula: see text] which is one of the six explicitly described types.


1976 ◽  
Vol 28 (1) ◽  
pp. 94-103 ◽  
Author(s):  
David Jacobson

LetRbe a finite ring with 1 and letR*denote the group of units ofR.Letpbe a prime number. In this paper we consider the question of whether there exista, binR*such thataandb arenon-p-th powers whose sum is 1. If such units a,bexisting, we say that R is an N (p)-ring. Of course ifpdoes not divide |R*|, the order of R*, then every element inR*is apthpower.


2007 ◽  
Vol 75 (1) ◽  
pp. 23-26
Author(s):  
David Dolžn

Let R be a finite ring. Let us denote its group of units by G = G(R) and its Jacobson radical by J = J(R). Let n be an arbitrary integer. We prove that R is an n-insertive ring if and only if G is an n-insertive group and show that every n-insertive finite ring is a direct sum of local rings. We prove that if n is a unit, then the local ring R is n-insertive if and only if its Jacobson group 1 + J is n-insertive and find an example to show that this is not true if n is a non-unit.


2009 ◽  
Vol 79 (2) ◽  
pp. 177-182 ◽  
Author(s):  
DAVID DOLŽAN

AbstractIn this paper we find all finite rings with a nilpotent group of units. It was thought that the answer to this was already given by McDonald in 1974, but as was shown by Groza in 1989, the conclusions that had been reached there do not hold. Here, we improve some results of Groza and describe the structure of an arbitrary finite ring with a nilpotent group of units, thus solving McDonald’s problem.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 307
Author(s):  
Sami Alabiad ◽  
Yousef Alkhamees

A finite ring with an identity whose lattice of ideals forms a unique chain is called a finite chain ring. Let R be a commutative chain ring with invariants p,n,r,k,m. It is known that R is an Eisenstein extension of degree k of a Galois ring S=GR(pn,r). If p−1 does not divide k, the structure of the unit group U(R) is known. The case (p−1)∣k was partially considered by M. Luis (1991) by providing counterexamples demonstrated that the results of Ayoub failed to capture the direct decomposition of U(R). In this article, we manage to determine the structure of U(R) when (p−1)∣k by fixing Ayoub’s approach. We also sharpen our results by introducing a system of generators for the unit group and enumerating the generators of the same order.


1992 ◽  
Vol 46 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Yasuyuki Hirano ◽  
Takao Sumiyama

Let R be a directly indecomposable finite ring. Let p be a prime, let m be a positive integer and suppose the radical of R has pm elements. Then we show that . As a consequence, we have that, for a given finite nilpotent ring N, there are up to isomorphism only finitely many finite rings not having simple ring direct summands, with radical isomorphic to N. Let R* denote the group of units of R. Then we prove that (1 − 1/p)m+1 ≤ |R*| / |R| ≤ 1 − 1/pm. As a corollary, we obtain that if R is a directly indecomposable non-simple finite 2′-ring then |R| < |R*| |Rad(R)|.


2005 ◽  
Vol 2005 (4) ◽  
pp. 579-592
Author(s):  
Chiteng'a John Chikunji

A completely primary finite ring is a ringRwith identity1≠0whose subset of all its zero-divisors forms the unique maximal idealJ. LetRbe a commutative completely primary finite ring with the unique maximal idealJsuch thatJ3=(0)andJ2≠(0). ThenR/J≅GF(pr)and the characteristic ofRispk, where1≤k≤3, for some primepand positive integerr. LetRo=GR(pkr,pk)be a Galois subring ofRand let the annihilator ofJbeJ2so thatR=Ro⊕U⊕V, whereUandVare finitely generatedRo-modules. Let nonnegative integerssandtbe numbers of elements in the generating sets forUandV, respectively. Whens=2,t=1, and the characteristic ofRisp; and whent=s(s+1)/2, for any fixeds, the structure of the group of unitsR∗of the ringRand its generators are determined; these depend on the structural matrices(aij)and on the parametersp,k,r, ands.


2014 ◽  
Vol 95 (109) ◽  
pp. 215-220
Author(s):  
Chiteng’a Chikunji

Let R be a completely primary finite ring with identity 1 ? 0 in which the product of any two zero divisors lies in its coefficient subring. We determine the structure of the group of units GR of these rings in the case when R is commutative and in some particular cases, obtain the structure and linearly independent generators of GR.


Sign in / Sign up

Export Citation Format

Share Document